a2 United States Patent

US009491571B2

10) Patent No.: US 9,491,571 B2

Karp et al. 45) Date of Patent: Nov. 8, 2016
(54) METHODS AND APPARATUS FOR USING (52) U.S.CL
SMART ENVIRONMENT DEVICES VIA CPC oo, HO4W 4/008 (2013.01); GO5B 13/04

(71)
(72)

(73)

")

@

(22)

(65)

(60)

(1)

APPLICATION PROGRAM INTERFACES
Applicant: Google Inc., Mountain View, CA (US)

Inventors: Igor Karp, Palo Alto, CA (US); Lev
Stesin, Mountain View, CA (US);
Carles Pi-Sunyer, Mountain View, CA
(US); Mark Andrew McBride, Santa
Clara, CA (US); Alexander Dubman,
San Mateo, CA (US)

Assignee: Google Inc., Mountain View, CA (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Appl. No.: 14/722,003

Filed: May 26, 2015

Prior Publication Data

US 2015/0370621 Al Dec. 24, 2015

Related U.S. Application Data

Provisional application No. 62/016,052, filed on Jun.
23, 2014.

Int. CL.

GO6F 3/00 (2006.01)

GO6F 9/44

GO6F 9/46

GO6F 13/00
HO4W 4/00
GO5B 15/02
GO5D 23/19
GO6F 9/54

HO4L 12/28
GO5B 13/04
GO8B 17/10
HO4L 29/06
HO4L 29/08

(2006.01)
(2006.01)
(2006.01)
(2009.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)

(2013.01); GO5B 15/02 (2013.01); GOSD
23/1904 (2013.01); GOSD 23/1917 (2013.01);
GO6F 9/54 (2013.01); GO6F 9/541 (2013.01);
GO6F 9/546 (2013.01); GOSB 17/10
(2013.01); HO4L 12/282 (2013.01); HO4L
12/2816 (2013.01); HO4L 12/2823 (2013.01);
HO4L 12/2829 (2013.01); HO4L 63/08
(2013.01); HO4L 67/1097 (2013.01); HO4L
67/22 (2013.01); HO4L 67/42 (2013.01)
(58) Field of Classification Search

CPC ittt HO04W 4/008

USPC ottt 719/328

See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

2014/0047368 Al* 2/2014 Yang ... GOG6F 3/0484

715/769

OTHER PUBLICATIONS

International Search Report and Written Opinion for PCT Applica-
tion No. PCT/US2015/037215 dated Oct. 9, 2015; 10 pgs.

Primary Examiner — Timothy A Mudrick

(57) ABSTRACT

Systems and Methods disclosed herein relate to providing a
message to an application programming interface (API). The
message includes a request for data from a data model, a
submission of data to the data model, or both; and a host
selection between: a representational state transfer (REST)
host and a subscription-based application programming
interface (API) host, wherein the REST host receives REST-
based messages and the subscription-based API host
receives messages in accordance with a standard of the
subscription-based API host; wherein the request for data,
the submission of data, or both are configured to create,
delete, modify, or any combination thereof data related to a
smart-device environment structure, a thermostat, a hazard
detector, or any combination thereof stored in a data model
accessible by the API.

20 Claims, 13 Drawing Sheets

L
Z;k‘
:Zg

J & >\70;-
D) f@ “pd N
""" 2)1(,5 v 29 f&/

4

POOL H!:A'I‘EJ;’
34
b
3
IRRIGATION| \
66
36

U.S. Patent Nov. 8, 2016 Sheet 1 of 13

Pt

MEMORY

18

PROCESSOR(S)

NETWORK
INTHRFACE

L
SER
INTERFACE

16

POWER SUPPLY

Fit f

/"‘}2

US 9,491,571 B2

SENSOR

US 9,491,571 B2

Sheet 2 of 13

Nov. 8, 2016

U.S. Patent

¢ Did

- BE

\L\.m

LEMAHENT

[vEH 7004

€

b ,\ﬂw

_%\Im_uzwﬂ%? %ﬁm\ x _ N @

ADVOTT) OVAH
] J DS (.\v_H_, E 0 o7 © |

5 « 1

U.S. Patent Nov. 8, 2016 Sheet 3 of 13 US 9,491,571 B2
)
NEST/PARTNER(S) | & o 80
>
o ~44
DERIVED e CHARITIES
FFOME DIATA) i
e -9G
ENGINES: o &]
- STATISTICS R GOVERNMENTS
-- INFERENCES =
-- INDEXING = 98
; = ACADEMIC
; INSTITUTIONS
§
H 64 90 ~ 100
W)
NEST o BUSINESSES
82 e
= 0
HOME DATA| | £ & 9
b o UTILITIES
o83 U
SERVICES || & 5
e 2
>
62
\iiiRNET
T - s \\
o S0
- ¢ %
Py 4 5 ~
f‘& 4 Y
f"' % 30
i! -
i / \ -
_ < ((:‘\\ 19 [DEVICES| b
|DEVICESI J N
__J88
| HuB |

U.S. Patent Nov. 8, 2016 Sheet 4 of 13 US 9,491,571 B2

— 11§
122 EX: d

EXTRINSIC INFORMATION| 77 WEATHER FORECAST

(c.g., FROM INTERNET) | _ NEIGHBORHOOD/HOME INFORMATION

PROCESSING
PARADIGMS
‘ E)& .
MANAGED | BERIAND)
SERVICES RESPONSE
N 1204
ADVERTISING/
) 4 / COMMUNICATION 120w
i |~
. PROCESSING <~
A R SOCIAL - 1260
CHALLENGES/
RULES/
COMPLIANCE/ |
REWARDS
“~
) 4
A A A A
\ 4) 4 \ 4 14 - \ 4 ~1i8
psiss| |[psiss| |Dsiss DS SS
SRR I YSUE A R SR LA T
DCi SC DCi SC DCi SC ”2"“DC§SC’““’
AN “ rd
DS = DATA SOURCE DEVI%E(S
o A E SRR - h%ﬁ%i HVAC, WATER CONTROLLERS/SENSORS
SC = SERVICE CONSUMER - SMOKE/CO/HAZARD SENSORS/ALARMS

Fit. 4

US 9,491,571 B2

Sheet 5 of 13

Nov. 8, 2016

U.S. Patent

/ pY L~
DY E gy f

§ O

JTYNOIS TIVEIN/
AIATT

SN

8

QT

SRR
CHELLYANNOD

SCACEETG
QANNY I

HENIVAEANEL m

Ay A AdA

TYNHEINT

A5

HOAEER JOIAHO

(S)EDIANES TN o1~

L84

TSTANAS NOTY v |

US 9,491,571 B2

Sheet 6 of 13

Nov. 8, 2016

U.S. Patent

@B

o

SHEVYHEN]
JNANLED

841~

VIV

7

N A ERVEERIE IREERY
MVMMWNMW =~ TS T
o 4V

P8 wﬁ 3T

§y1

0GR e

U.S. Patent

Nov. 8, 2016 Sheet 7 of 13

350
| INITIATE SESSION |

252

| RECEIVE DATA REQUEST |
‘ 254

| PROCESS REQUEST |
¥ 256
E WAKE DEVICE
v 258

PROVIDE RELEVANT

DATA BASED ON REQUEST

FiG. 7

A

INITIATE SESSION

-
R
4

oo~ 284

DATA {1

Tves

PROVIDE CHANGED
DATATO SERVICE

PROVIDE CHANGED
DATA TO CLIENT

Fite. &

TANGET o

e Ais

¥ 8%

US 9,491,571 B2

280

o300

S32 4 -308 SO
o WORK WITH NEST USER.
S Y PARSWORD:
CONNECT ||) o S o
wITHE NEST [T] W e T DATA
NTe " SUBMIT MODEL

FiG. 9

U.S. Patent Nov. 8, 2016 Sheet 8 of 13 US 9,491,571 B2

o304

Works with Nest

Company Awouid Eks fo do the following:

31—

Ses your Nest Profect’s smoke, carbon monaxids,
O and battery info,

Allows Active Lights fo tum rad during an

EMErgency.

312 .
a G See when your home is sef to Away.
Allows Aclive Lights 1o tum off the lighls when
VOur ouse is set Away.

i at any point you'd like o disconnedd this integration, you
san de 5o in the Nest app under account setlings.

A Nest, we lake your privacy sericusly. And we believs in
baing epen and hones! about using your dala,

Learn more 3

(' sccEpt)

Company A and Nesi vl use this mformation in accordance with
their respactive terms of servics and privacy policles.

Sign in to a different acoount >

FIG, 16
-4
318 24,00
THIRD PARTY CLIENT |« i DEYVICH SERVICE OR AP
&
7 316 191
SMART DEVICE USER el AT ITHORIZATION SERVER

FiG. i

US 9,491,571 B2

Sheet 9 of 13

Nov. 8, 2016

U.S. Patent

Y MO HDIAYAES
AHAHO

R IRIOIGER:]

o WCESOL SSHIIY HILA IOUMA0STY L8AN0HY

Zf A
HRINOSEY 18EN

A
DNINIYINGD HDYd

¥

NETSICHE SRTIDGY s

e TN INATD)
HGOD MV ZAMAHLOY

TGN MOLIVZRIGHLNY

BEIACENGFID OL LOdYIaas

A0S NOLIVZDOHLNY HLIM MASH OL
JOFHIAEN NAMLAY 8532008 NO
i
A SNOIS SRS BUNOSD HOMES VI HINYNEESY

e A NOINSIWH A SSEODV HOHO0SHYE NV NIDOYT i

e’ ™3 T T INATTD HIA NOLIWZIEOHINY I8N

HOVA NOLIVZTEGHINY

W P

NAOLHNTT HEIA J0vd

g T LV LEAN DN
HOvwd

o
en
Iaa}

72 iy

-t
pes
Lol

o~
e
o

el
-
(o]

)
o
o

fod
P
P

]
(a3
o

=
)
e

o3
€4
oy

06 pu-

HEANHS

NOLEVZRIOHLNY

ANATID ALV HERD HIAHG
(WiHE TEVING

161

gig-’ SH

- 07E

U.S. Patent Nov. 8,

330 ~\

2016 Sheet 10

352

SMART DEVICE
CLIENT APPLICATION

of 13 US 9,491,571 B2

~54, 50

DEVICE SERVICH OR AP

SMART DEVICE UBER

101

B AUTHORIZATION SERVER

FiG 13

US 9,491,571 B2

Sheet 11 of 13

Nov. 8, 2016

U.S. Patent

pi A

VALTWYEYY LNIN0M 8V NTYOL STV HLIM

AV MO HDIANES
HOAT

&

I

SENNOSTE LSTIN SISINGME NOLLYOILY
MEHMOL SSHIDV HLIM SONGESHY
HHANAS NOLLYZHIOHINY LEIN
HHANHES NOIYZIHMOHLAY LSAN OF LTE0ES INITED .
SO0 NOILYZIHOHINY SIINENS NOUYDIIddY .

ARNGsTE LVEN

5 auad

e

AAAES

NOLEVZRIGHINY

Bgi=

frrnoooovaneacn

OO0 NOLIYZMOHLOY
HLEM HDVL TN

RNV ED MOISRING A

e

AOMABSYE ANV NSO

ADvd NOISTINEHEL
AOHOCETE OV NEDOT

TWTN AENDAVINIOGT

SO ISEN LSENGFE 9950

oo

— NOTIF T TAEY NI 300
NOLIYZIHORLOY SEEENT HAS/

o WODEREN WOML HOG0
NOLLVZRHOGHLAY NMIYLEO 0L
HESH SLdWOEd NOLIVOEIddY

W NOLIY W Idd Y STIVISNT ¥400

MNOLIV I TAdY LNGEETS
AATO LEVING

AES ALY
LAVING
gig

Fan
33

US 9,491,571 B2

Sheet 12 of 13

Nov. 8, 2016

U.S. Patent

FiVa

IDIAFC |
ALV

ade

g
7

Hdsn pis = ,,EQ&M

HSNOH
RERIR
Yivd

§DEF

ONOILINIAAG AdAL |
HOFAT
61+
 NOLLNIAAG GdAL
AL

IdY A AUHS

SHIMAYER

HATIADNA
Y

NI

CRAASEH o

HIIAHG

LI5HY

NOLLINIZEI
[Ja--- 3481 -
ATARG
ETFT ,, -
NOLLINTATC 909
dd AL
ADIAAU
Mivd
FOIAYES T .
HOIAA | 4V
....... HOEAY
FAAC
Fa 036

1dY

% 2
L]
A!s ey 2 %
g [
* 1)
MM m L
Y
H ¢ s
; v
COY
H
A vo M
Lsd .

DONDIEYD L e

ARV
L Mwm { m

LIRE e
N Y HENEA
HOAZE
- ALEVA
4 {IHL
h 75

ASVHIEA

k.

IO

U.S. Patent Nov. 8, 2016 Sheet 13 of 13 US 9,491,571 B2
&0 \}*
PROVISION VENDOR |5
&
PROVISION DEVICE |
¥
SAIR DEVICE 60
w
PROVIDE DEVICE PATH V8
Fige. 16
TG ~\§
6 704
710 3F DEVICE 3P DEVICE TYPE
AUTH USER* D B
DU ag |WEAVE PRODUCT ID
tq WEAVE DEVICE phia NAME
D NAME PATH
) PAIRED AT MANIFEST
}:L’
o i PARTOF i o % o
BELONGS TO i PRODUCED BY
STRUCTURE® DEVICE HISTORY WWN VEMDOR
D - D
T [A FRR T . e . AN YA v 2 FEIMIT 3 B
CUUID L PAIRED painen ay WEAVE VENDOR 13
PAIRED AT e NAME
N7 No7in PATH
o7

FiG. 17

US 9,491,571 B2

1
METHODS AND APPARATUS FOR USING
SMART ENVIRONMENT DEVICES VIA
APPLICATION PROGRAM INTERFACES

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is a Non-Provisional application claim-
ing priority to U.S. Provisional Patent Application No.
62/016,052, entitled “Methods and Apparatus for Exploiting
Application Programming Interfaces to Smart Home Envi-
ronment Electronic Components”, filed Jun. 23, 2014, which
is herein incorporated by reference. This application incor-
porates in their entirety co-pending U.S. patent application
Ser. No. 14/722,012, Ser. No. 14/722,023, Ser. No. 14/722,
026, Ser. No. 14/722,032, Ser. No. 14/722,034, entitled
“METHODS AND APPARATUS FOR USING SMART
ENVIRONMENT DEVICES VIA APPLICATION PRO-
GRAM INTERFACES”, filed May 26, 2015.

BACKGROUND

This disclosure relates to accessing data and/or control-
ling electronic devices (e.g., smart devices) via one or more
application programming interfaces (APIs).

This section is intended to introduce the reader to various
aspects of art that may be related to various aspects of the
present disclosure, which are described and/or claimed
below. This discussion is believed to be helpful in providing
the reader with background information to facilitate a better
understanding of the various aspects of the present disclo-
sure. Accordingly, it should be understood that these state-
ments are to be read in this light, and not as admissions of
prior art.

People interact with a number of different electronic
devices on a daily basis. In a home setting, for example, a
person may interact with smart thermostats, lighting sys-
tems, alarm systems, entertainment systems, and a variety of
other electronic devices. To interact with some of these
electronic devices, a person may communicate a command
using an application program running on another electronic
device. For instance, a person may control the temperature
setting on a smart thermostat using an application program
running on a smartphone. The application program may
communicate with a secure online service that interacts with
that thermostat.

To preserve the user experience associated with an elec-
tronic device, the manufacturer of the electronic device may
develop the application programs to control the electronic
device. Opening access to the electronic devices to third
party developers, however, may potentially improve the
experience of some people with the devices—but only if
third party application programs do not cause the electronic
devices to behave in an undesirable manner. Accordingly,
while it may be desirable to open access to the electronic
devices to third party developers, it may also be desirable to
place restrictions on that access so as to reduce the risk that
the third party access may negatively impact the operation of
the electronic devices and thus the user experience associ-
ated with those devices.

SUMMARY

A summary of certain embodiments disclosed herein is set
forth below. It should be understood that these aspects are
presented merely to provide the reader with a brief summary
of these certain embodiments and that these aspects are not

10

15

20

25

30

35

40

45

50

55

60

65

2

intended to limit the scope of this disclosure. Indeed, this
disclosure may encompass a variety of aspects that may not
be set forth below.

According to embodiments of this disclosure, applications
may access different installations of smart home devices
(e.g., via an application programming interface (API)).
Namely, the third party applications may communicate not
directly with a smart home device, but rather through a
device service. The device service may provide a corre-
sponding update signal to the target smart home device
based on one or more factors such as operation status
parameters of the device.

Various refinements of the features noted above may exist
in relation to various aspects of the present disclosure.
Further features may also be incorporated in these various
aspects as well. These refinements and additional features
may exist individually or in any combination. For instance,
various features discussed below in relation to one or more
of'the illustrated embodiments may be incorporated into any
of the above-described aspects of the present disclosure
alone or in any combination. The brief summary presented
above is intended only to familiarize the reader with certain
aspects and contexts of embodiments of the present disclo-
sure without limitation to the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

Various aspects of this disclosure may be better under-
stood upon reading the following detailed description and
upon reference to the drawings in which:

FIG. 1 is a block diagram of a smart home device, in
accordance with an embodiment;

FIG. 2 is a block diagram of a connected smart home
environment that includes a number of smart home devices,
in accordance with an embodiment;

FIG. 3 is a block diagram illustrating a manner of con-
trolling and/or accessing the smart home environment using
services over the internet, in accordance with an embodi-
ment;

FIG. 4 is a block diagram of processing paradigms that
may be used to control devices of the smart home environ-
ment, in accordance with an embodiment;

FIG. 5 is a block diagram of a system that provides access
to smart home devices, in accordance with an embodiment;

FIG. 6 is a block diagram of a system 180 that uses an API
90 to access one or more device services 84 to request data
from, control, and/or store data that may be useful to the
smart devices, in accordance with an embodiment;

FIG. 7 illustrates a process for providing data requests via
the subscription-based device service, in accordance with an
embodiment;

FIG. 8 illustrates a process for providing data from smart
devices and/or structures to a client, in accordance with an
embodiment;

FIG. 9 illustrates a flow diagram of a process for a user to
authorize a client to access user data in the data model via
the device service, in accordance with an embodiment;

FIG. 10 illustrates the resource access permission page of
FIG. 9, in accordance with an embodiment;

FIG. 11 illustrates a block diagram of a system for
authorizing clients to use a user’s smart device data via the
web, in accordance with an embodiment;

FIG. 12 illustrates a sequence diagram for authorizing
clients to use a user’s smart device data using the system of
FIG. 11 via the web, in accordance with an embodiment;

US 9,491,571 B2

3

FIG. 13 illustrates a block diagram of a system for
authorizing clients to use a user’s smart device data via a
PIN when the devices do not have a web UI, in accordance
with an embodiment;

FIG. 14 illustrates a sequence diagram for authorizing
clients to use a user’s smart device data using the system of
FIG. 13 via the PIN, in accordance with an embodiment;

FIG. 15 is a schematic diagram, illustrating a system
third-party vendor and device provisioning that enables
consumption of third-party device data via the API in
accordance with an embodiment;

FIG. 16 is a flowchart, illustrating a process for provi-
sioning third-party vendors and third-party devices, such
that third-party device data may be consumed via the API,
in accordance with an embodiment; and

FIG. 17 is a relational diagram, illustrating a relationship
of entities stored in the system when provisioning third-
parties/third-party devices in the system, in accordance with
an embodiment.

DETAILED DESCRIPTION OF SPECIFIC
EMBODIMENTS

One or more specific embodiments will be described
below. In an effort to provide a concise description of these
embodiments, not all features of an actual implementation
are described in the specification. It should be appreciated
that in the development of any such actual implementation,
as in any engineering or design project, numerous imple-
mentation-specific decisions may be made to achieve the
developers’ specific goals, such as compliance with system-
related and business-related constraints, which may vary
from one implementation to another. Moreover, it should be
appreciated that such a development effort might be com-
plex and time consuming, but would nevertheless be a
routine undertaking of design, fabrication, and manufacture
for those of ordinary skill having the benefit of this disclo-
sure.

Embodiments of the present disclosure relate to an elec-
tronic device, such as a thermostat or a hazard detector (e.g.,
smoke detector, carbon monoxide detector, etc.), that may be
disposed in a building (e.g., home or office) such that the
electronic device may detect the presence of a human being
in the building and distinguish between the presence of the
human being and a pet. Generally, the electronic device may
employ a sensor, such as a passive infrared (PIR) sensor, to
detect the presence of a human being. However, each PIR
sensor may be inherently sensitive to different levels of
noise. By accounting for the different sensitivity levels of
each PIR sensor, the electronic device may improve its
detection of human beings and better distinguish between
the presence of human beings and pets.

Keeping this in mind, the electronic device may include
a low-power processor that may store the sensor measure-
ments acquired by the PIR sensor during a time period when
the electronic device does not expect a human in the building
or portion of the building being monitored by electronic
device is not expected to have a human being present. In one
embodiment, after storing the sensor measurements over
some period of time, the low-power processor may send the
stored sensor measurements to a high-power processor of
the electronic device. The high-power processor may then
calculate a threshold or adjust the previous threshold for
determining a presence of a human based on the stored
sensor measurements that correspond to the time period
when a human being is likely not present in the building. The
high-power processor may then send the newly calculated or

15

20

25

30

35

40

45

50

55

60

65

4

the adjusted threshold to the low-power processor. The
low-power processor may then use the newly calculated or
the adjusted threshold to detect the presence of a human.
Since the new threshold is calculated based on the respective
sensor measurements for the respective PIR sensor of a
respective electronic device, the new threshold may com-
pensate for the inherent sensitivity characteristics of the
respective PIR sensor. As a result, the electronic device may
detect the presence of a human being more effectively and
efficiently.

Smart Device in Smart Home Environment

By way of introduction, FIG. 1 illustrates an example of
a general device 10 that may that may be disposed within a
building environment. In one embodiment, the device 10
may include one or more sensors 12, a user-interface com-
ponent 14, a power supply 16 (e.g., including a power
connection and/or battery), a network interface 18, a high-
power processor 20, a low-power processor 22, a passive
infrared (PIR) sensor 24, a light source 26, and the like.

The sensors 12, in certain embodiments, may detect
various properties such as acceleration, temperature, humid-
ity, water, supplied power, proximity, external motion,
device motion, sound signals, ultrasound signals, light sig-
nals, fire, smoke, carbon monoxide, global-positioning-sat-
ellite (GPS) signals, radio-frequency (RF), other electro-
magnetic signals or fields, or the like. As such, the sensors
12 may include temperature sensor(s), humidity sensor(s),
hazard-related sensor(s) or other environmental sensor(s),
accelerometer(s), microphone(s), optical sensors up to and
including camera(s) (e.g., charged coupled-device or video
cameras), active or passive radiation sensors, GPS receiver
(s) or radiofrequency identification detector(s). While FIG.
1 illustrates an embodiment with a single sensor, many
embodiments may include multiple sensors. In some
instances, the device 10 may include one or more primary
sensors and one or more secondary sensors. Here, the
primary sensor(s) may sense data central to the core opera-
tion of the device (e.g., sensing a temperature in a thermostat
or sensing smoke in a smoke detector), while the secondary
sensor(s) may sense other types of data (e.g., motion, light
or sound), which can be used for energy-efficiency objec-
tives or smart-operation objectives.

One or more user-interface components 14 in the device
10 may receive input from the user and/or present informa-
tion to the user. The received input may be used to determine
a setting. In certain embodiments, the user-interface com-
ponents may include a mechanical or virtual component that
responds to the user’s motion. For example, the user can
mechanically move a sliding component (e.g., along a
vertical or horizontal track) or rotate a rotatable ring (e.g.,
along a circular track), or the user’s motion along a touchpad
may be detected. Such motions may correspond to a setting
adjustment, which can be determined based on an absolute
position of a user-interface component 14 or based on a
displacement of a user-interface components 14 (e.g.,
adjusting a set point temperature by 1 degree F. for every 10°
rotation of a rotatable-ring component). Physically and
virtually movable user-interface components can allow a
user to set a setting along a portion of an apparent con-
tintum. Thus, the user may not be confined to choose
between two discrete options (e.g., as would be the case if
up and down buttons were used) but can quickly and
intuitively define a setting along a range of possible setting
values. For example, a magnitude of a movement of a
user-interface component may be associated with a magni-

US 9,491,571 B2

5

tude of a setting adjustment, such that a user may dramati-
cally alter a setting with a large movement or finely tune a
setting with a small movement.

The user-interface components 14 may also include one
or more buttons (e.g., up and down buttons), a keypad, a
number pad, a switch, a microphone, and/or a camera (e.g.,
to detect gestures). In one embodiment, the user-interface
component 14 may include a click-and-rotate annular ring
component that may enable the user to interact with the
component by rotating the ring (e.g., to adjust a setting)
and/or by clicking the ring inwards (e.g., to select an
adjusted setting or to select an option). In another embodi-
ment, the user-interface component 14 may include a camera
that may detect gestures (e.g., to indicate that a power or
alarm state of a device is to be changed). In some instances,
the device 10 may have one primary input component,
which may be used to set a plurality of types of settings. The
user-interface components 14 may also be configured to
present information to a user via, e.g., a visual display (e.g.,
a thin-film-transistor display or organic light-emitting-diode
display) and/or an audio speaker.

The power-supply component 16 may include a power
connection and/or a local battery. For example, the power
connection may connect the device 10 to a power source
such as a line voltage source. In some instances, an AC
power source can be used to repeatedly charge a (e.g.,
rechargeable) local battery, such that the battery may be used
later to supply power to the device 10 when the AC power
source is not available.

The network interface 18 may include a component that
enables the device 10 to communicate between devices. As
such, the network interface 18 may enable the device 10 to
communicate with other devices 10 via a wired or wireless
network. The network interface 18 may include a wireless
card or some other transceiver connection to facilitate this
communication.

The high-power processor 20 and the low-power proces-
sor 22 may support one or more of a variety of different
device functionalities. As such, the high-power processor 20
and the low-power processor 22 may each include one or
more processors configured and programmed to carry out
and/or cause to be carried out one or more of the function-
alities described herein. In one embodiment, the high-power
processor 20 and the low-power processor 22 may include
general-purpose processors carrying out computer code
stored in local memory (e.g., flash memory, hard drive,
and/or random access memory), special-purpose processors
or application-specific integrated circuits, combinations
thereof, and/or using other types of hardware/firmware/
software processing platforms. In certain embodiments, the
high-power processor 20 may execute computationally
intensive operations such as operating the user-interface
component 14 and the like. The low-power processor 22, on
the other hand, may manage less complex processes such as
detecting a hazard or temperature from the sensor 12. In one
embodiment, the low-power processor may wake or initial-
ize the high-power processor for computationally intensive
processes.

By way of example, the high-power processor 20 and the
low-power processor 22 may detect when a location (e.g., a
house or room) is occupied (i.e., includes a presence of a
human), up to and including whether it is occupied by a
specific person or is occupied by a specific number of people
(e.g., relative to one or more thresholds). In one embodi-
ment, this detection can occur, e.g., by analyzing micro-
phone signals, detecting user movements (e.g., in front of a
device), detecting openings and closings of doors or garage

10

15

20

25

30

35

40

45

50

55

60

65

6

doors, detecting wireless signals, detecting an internet pro-
tocol (IP) address of a received signal, detecting operation of
one or more devices within a time window, or the like.
Moreover, the high-power processor 20 and the low-power
processor 22 may include image recognition technology to
identify particular occupants or objects.

In certain embodiments, the high-power processor 20 and
the low-power processor 22 may detect the presence of a
human using the PIR sensor 24. The PIR sensor 24 may be
a passive infrared sensor that may measures infrared (IR)
light radiating from objects in its field of view. As such, the
PIR sensor 24 may detect the Infrared radiation emitted from
an object.

In some instances, the high-power processor 20 may
predict desirable settings and/or implement those settings.
For example, based on the presence detection, the high-
power processor 20 may adjust device settings to, e.g.,
conserve power when nobody is home or in a particular
room or to accord with user preferences (e.g., general
at-home preferences or user-specific preferences). As
another example, based on the detection of a particular
person, animal or object (e.g., a child, pet or lost object), the
high-power processor 20 may initiate an audio or visual
indicator of where the person, animal or object is or may
initiate an alarm or security feature if an unrecognized
person is detected under certain conditions (e.g., at night or
when lights are off).

In some instances, devices may interact with each other
such that events detected by a first device influence actions
of a second device. For example, a first device can detect
that a user has entered into a garage (e.g., by detecting
motion in the garage, detecting a change in light in the
garage or detecting opening of the garage door). The first
device can transmit this information to a second device via
the network interface 18, such that the second device can,
e.g., adjust a home temperature setting, a light setting, a
music setting, and/or a security-alarm setting. As another
example, a first device can detect a user approaching a front
door (e.g., by detecting motion or sudden light pattern
changes). The first device may, e.g., cause a general audio or
visual signal to be presented (e.g., such as sounding of a
doorbell) or cause a location-specific audio or visual signal
to be presented (e.g., to announce the visitor’s presence
within a room that a user is occupying).

In addition to detecting various types of events, the device
10 may include a light source 26 that may illuminate when
a living being, such as a human, is detected as approaching.
The light source 26 may include any type of light source
such as one or more light-emitting diodes or the like. The
light source 26 may be communicatively coupled to the
high-power processor 20 and the low-power processor 22,
which may provide a signal to cause the light source 26 to
illuminate.

Keeping the foregoing in mind, FIG. 2 illustrates an
example of a smart-home environment 30 within which one
or more of the devices 10 of FIG. 1, methods, systems,
services, and/or computer program products described fur-
ther herein can be applicable. The depicted smart-home
environment 30 includes a structure 32, which can include,
e.g., a house, office building, garage, or mobile home. It will
be appreciated that devices can also be integrated into a
smart-home environment 30 that does not include an entire
structure 32, such as an apartment, condominium, or office
space. Further, the smart home environment can control
and/or be coupled to devices outside of the actual structure
32. Indeed, several devices in the smart home environment
need not physically be within the structure 32 at all. For

US 9,491,571 B2

7

example, a device controlling a pool heater or irrigation
system can be located outside of the structure 32.

The depicted structure 32 includes a plurality of rooms 38,
separated at least partly from each other via walls 40. The
walls 40 can include interior walls or exterior walls. Each
room can further include a floor 42 and a ceiling 44. Devices
can be mounted on, integrated with and/or supported by a
wall 40, floor 42 or ceiling 44.

In some embodiments, the smart-home environment 30 of
FIG. 2 includes a plurality of devices 10, including intelli-
gent, multi-sensing, network-connected devices, that can
integrate seamlessly with each other and/or with a central
server or a cloud-computing system to provide any of a
variety of useful smart-home objectives. The smart-home
environment 30 may include one or more intelligent, multi-
sensing, network-connected thermostats 46 (hereinafter
referred to as “smart thermostats 46”), one or more intelli-
gent, network-connected, multi-sensing hazard detection
units 50 (hereinafter referred to as “smart hazard detectors
50”), and one or more intelligent, multi-sensing, network-
connected entryway interface devices 52 (hereinafter
referred to as “smart doorbells 52”). According to embodi-
ments, the smart thermostat 46 may include a Nest® [Learn-
ing Thermostat—1st Generation T100577 or Nest® Learn-
ing Thermostat—2nd Generation T200577 by Nest Labs,
Inc., among others. The smart thermostat 46 detects ambient
climate characteristics (e.g., temperature and/or humidity)
and controls a HVAC system 48 accordingly.

The smart hazard detector 50 may detect the presence of
a hazardous substance or a substance indicative of a haz-
ardous substance (e.g., smoke, fire, or carbon monoxide).
The smart hazard detector 50 may include a Nest® Protect
that may include sensors 12 such as smoke sensors, carbon
monoxide sensors, and the like. As such, the hazard detector
50 may determine when smoke, fire, or carbon monoxide
may be present within the building.

The smart doorbell 52 may detect a person’s approach to
or departure from a location (e.g., an outer door), control
doorbell functionality, announce a person’s approach or
departure via audio or visual means, or control settings on a
security system (e.g., to activate or deactivate the security
system when occupants go and come). The smart doorbell
52 may interact with other devices 10 based on whether
someone has approached or entered the smart-home envi-
ronment 30.

In some embodiments, the smart-home environment 30
further includes one or more intelligent, multi-sensing, net-
work-connected wall switches 54 (hereinafter referred to as
“smart wall switches 54”), along with one or more intelli-
gent, multi-sensing, network-connected wall plug interfaces
56 (hereinafter referred to as “smart wall plugs 56). The
smart wall switches 54 may detect ambient lighting condi-
tions, detect room-occupancy states, and control a power
and/or dim state of one or more lights. In some instances,
smart wall switches 54 may also control a power state or
speed of a fan, such as a ceiling fan. The smart wall plugs
56 may detect occupancy of a room or enclosure and control
supply of power to one or more wall plugs (e.g., such that
power is not supplied to the plug if nobody is at home).

Still further, in some embodiments, the device 10 within
the smart-home environment 30 may further includes a
plurality of intelligent, multi-sensing, network-connected
appliances 58 (hereinafter referred to as “smart appliances
58”), such as refrigerators, stoves and/or ovens, televisions,
washers, dryers, lights, stereos, intercom systems, garage-
door openers, floor fans, ceiling fans, wall air conditioners,
pool heaters, irrigation systems, security systems, and so

10

15

20

25

30

35

40

45

50

55

60

65

8

forth. According to embodiments, the network-connected
appliances 58 are made compatible with the smart-home
environment by cooperating with the respective manufac-
turers of the appliances. For example, the appliances can be
space heaters, window AC units, motorized duct vents, etc.
When plugged in, an appliance can announce itself to the
smart-home network, such as by indicating what type of
appliance it is, and it can automatically integrate with the
controls of the smart-home. Such communication by the
appliance to the smart home can be facilitated by any wired
or wireless communication protocols known by those having
ordinary skill in the art. The smart home also can include a
variety of non-communicating legacy appliances 68, such as
old conventional washer/dryers, refrigerators, and the like
which can be controlled, albeit coarsely (ON/OFF), by
virtue of the smart wall plugs 56. The smart-home environ-
ment 30 can further include a variety of partially commu-
nicating legacy appliances 70, such as infrared (“IR”) con-
trolled wall air conditioners or other IR-controlled devices,
which can be controlled by IR signals provided by the smart
hazard detectors 50 or the smart wall switches 54.

According to embodiments, the smart thermostats 46, the
smart hazard detectors 50, the smart doorbells 52, the smart
wall switches 54, the smart wall plugs 56, and other devices
of the smart-home environment 30 are modular and can be
incorporated into older and new houses. For example, the
devices 10 are designed around a modular platform consist-
ing of two basic components: a head unit and a back plate,
which is also referred to as a docking station. Multiple
configurations of the docking station are provided so as to be
compatible with any home, such as older and newer homes.
However, all of the docking stations include a standard
head-connection arrangement, such that any head unit can be
removably attached to any docking station. Thus, in some
embodiments, the docking stations are interfaces that serve
as physical connections to the structure and the voltage
wiring of the homes, and the interchangeable head units
contain all of the sensors 12, processors 28, user interfaces
14, the power supply 16, the network interface 18, and other
functional components of the devices described above.

Many different commercial and functional possibilities
for provisioning, maintenance, and upgrade are possible. For
example, after years of using any particular head unit, a user
will be able to buy a new version of the head unit and simply
plug it into the old docking station. There are also many
different versions for the head units, such as low-cost
versions with few features, and then a progression of
increasingly-capable versions, up to and including
extremely fancy head units with a large number of features.
Thus, it should be appreciated that the various versions of
the head units can all be interchangeable, with any of them
working when placed into any docking station. This can
advantageously encourage sharing and re-deployment of old
head units—for example, when an important high-capability
head unit, such as a hazard detector, is replaced by a new
version of the head unit, then the old head unit can be
re-deployed to a back room or basement, etc. According to
embodiments, when first plugged into a docking station, the
head unit can ask the user (by 2D LCD display, 2D/3D
holographic projection, voice interaction, etc.) a few simple
questions such as, “Where am I and the user can indicate
“living room”, “kitchen” and so forth.

The smart-home environment 30 may also include com-
munication with devices outside of the physical home but
within a proximate geographical range of the home. For
example, the smart-home environment 30 may include a
pool heater monitor 34 that communicates a current pool

US 9,491,571 B2

9

temperature to other devices within the smart-home envi-
ronment 30 or receives commands for controlling the pool
temperature. Similarly, the smart-home environment 30 may
include an irrigation monitor 36 that communicates infor-
mation regarding irrigation systems within the smart-home
environment 30 and/or receives control information for
controlling such irrigation systems. According to embodi-
ments, an algorithm is provided for considering the geo-
graphic location of the smart-home environment 30, such as
based on the zip code or geographic coordinates of the
home. The geographic information is then used to obtain
data helpful for determining optimal times for watering,
such data may include sun location information, tempera-
ture, dewpoint, soil type of the land on which the home is
located, etc.

By virtue of network connectivity, one or more of the
smart-home devices of FIG. 2 can further allow a user to
interact with the device even if the user is not proximate to
the device. For example, a user can communicate with a
device using a computer (e.g., a desktop computer, laptop
computer, or tablet) or other portable electronic device (e.g.,
a smartphone) 66. A web page or app can be configured to
receive communications from the user and control the
device based on the communications and/or to present
information about the device’s operation to the user. For
example, the user can view a current setpoint temperature
for a device and adjust it using a computer. The user can be
in the structure during this remote communication or outside
the structure.

As discussed, users can control the smart thermostat and
other smart devices in the smart-home environment 30 using
a network-connected computer or portable electronic device
66. In some examples, some or all of the occupants (e.g.,
individuals who live in the home) can register their device
66 with the smart-home environment 30. Such registration
can be made at a central server to authenticate the occupant
and/or the device as being associated with the home and to
give permission to the occupant to use the device to control
the smart devices in the home. An occupant can use their
registered device 66 to remotely control the smart devices of
the home, such as when the occupant is at work or on
vacation. The occupant may also use their registered device
to control the smart devices when the occupant is actually
located inside the home, such as when the occupant is sitting
on a couch inside the home. It should be appreciated that
instead of or in addition to registering devices 66, the
smart-home environment 30 makes inferences about which
individuals live in the home and are therefore occupants and
which devices 66 are associated with those individuals. As
such, the smart-home environment “learns” who is an occu-
pant and permits the devices 66 associated with those
individuals to control the smart devices of the home.

In some instances, guests desire to control the smart
devices. For example, the smart-home environment may
receive communication from an unregistered mobile device
of an individual inside of the home, where said individual is
not recognized as an occupant of the home. Further, for
example, a smart-home environment may receive commu-
nication from a mobile device of an individual who is known
to be or who is registered as a guest.

According to embodiments, a guest-layer of controls can
be provided to guests of the smart-home environment 30.
The guest-layer of controls gives guests access to basic
controls (e.g., a judicially selected subset of features of the
smart devices), such as temperature adjustments, but it locks
out other functionalities. The guest layer of controls can be
thought of as a “safe sandbox” in which guests have limited

10

15

20

25

30

35

40

45

50

55

60

65

10

controls, but they do not have access to more advanced
controls that could fundamentally alter, undermine, damage,
or otherwise impair the occupant-desired operation of the
smart devices. For example, the guest layer of controls will
not permit the guest to adjust the heat-pump lockout tem-
perature.

A use case example of this is when a guest is in a smart
home, the guest could walk up to the thermostat and turn the
dial manually, but the guest may not want to walk around the
house “hunting” for the thermostat, especially at night while
the home is dark and others are sleeping. Further, the guest
may not want to go through the hassle of downloading the
necessary application to their device for remotely control-
ling the thermostat. In fact, the guest may not have the home
owner’s login credentials, etc., and therefore cannot
remotely control the thermostat via such an application.
Accordingly, according to embodiments of the invention, the
guest can open a mobile browser on their mobile device,
type a keyword, such as “NEST” into the URL field and tap
“Go” or “Search”, etc. In response, the device presents the
guest with a user interface which allows the guest to move
the target temperature between a limited range, such as 65
and 80 degrees Fahrenheit. As discussed, the user interface
provides a guest layer of controls that are limited to basic
functions. The guest cannot change the target humidity,
modes, or view energy history.

According to embodiments, to enable guests to access the
user interface that provides the guest layer of controls, a
local webserver is provided that is accessible in the local
area network (LAN). It does not require a password, because
physical presence inside the home is established reliably
enough by the guest’s presence on the LAN. In some
embodiments, during installation of the smart device, such
as the smart thermostat, the home owner is asked if they
want to enable a Local Web App (LWA) on the smart device.
Business owners will likely say no; home owners will likely
say yes. When the LWA option is selected, the smart device
broadcasts to the LAN that the above referenced keyword,
such as “NEST”, is now a host alias for its local web server.
Thus, no matter whose home a guest goes to, that same
keyword (e.g., “NEST”) is always the URL you use to
access the LWA, provided the smart device is purchased
from the same manufacturer. Further, according to embodi-
ments, if there is more than one smart device on the LAN,
the second and subsequent smart devices do not offer to set
up another LWA. Instead, they register themselves as target
candidates with the master LWA. And in this case the LWA
user would be asked which smart device they want to change
the temperature on before getting the simplified user inter-
face for the particular smart device they choose.

According to embodiments, a guest layer of controls may
also be provided to users by means other than a device 66.
For example, the smart device, such as the smart thermostat,
may be equipped with walkup-identification technology
(e.g., face recognition, RFID, ultrasonic sensors) that “fin-
gerprints” or creates a “signature” for the occupants of the
home. The walkup-identification technology can be the
same as or similar to the fingerprinting and signature cre-
ating techniques described in other sections of this applica-
tion. In operation, when a person who does not live in the
home or is otherwise not registered with the smart home or
whose fingerprint or signature is not recognized by the smart
home “walks up” to a smart device, the smart device
provides the guest with the guest layer of controls, rather
than full controls.

As described below, the smart thermostat 46 and other
smart devices “learn” by observing occupant behavior. For

US 9,491,571 B2

11

example, the smart thermostat learns occupants’ preferred
temperature set-points for mornings and evenings, and it
learns when the occupants are asleep or awake, as well as
when the occupants are typically away or at home, for
example. According to embodiments, when a guest controls
the smart devices, such as the smart thermostat, the smart
devices do not “learn” from the guest. This prevents the
guest’s adjustments and controls from affecting the learned
preferences of the occupants.

According to some embodiments, a smart television
remote control is provided. The smart remote control rec-
ognizes occupants by thumbprint, visual identification,
RFID, etc., and it recognizes a user as a guest or as someone
belonging to a particular class having limited control and
access (e.g., child). Upon recognizing the user as a guest or
someone belonging to a limited class, the smart remote
control only permits that user to view a subset of channels
and to make limited adjustments to the settings of the
television and other devices. For example, a guest cannot
adjust the digital video recorder (DVR) settings, and a child
is limited to viewing child-appropriate programming.

According to some embodiments, similar controls are
provided for other instruments, utilities, and devices in the
house. For example, sinks, bathtubs, and showers can be
controlled by smart spigots that recognize users as guests or
as children and therefore prevent water from exceeding a
designated temperature that is considered safe.

In some embodiments, in addition to containing process-
ing and sensing capabilities, each of the devices 34, 36, 46,
50, 52, 54, 56, and 58 (collectively referred to as “the smart
devices™) is capable of data communications and informa-
tion sharing with any other of the smart devices, as well as
to any central server or cloud-computing system or any other
device that is network-connected anywhere in the world.
The required data communications can be carried out using
any of a variety of custom or standard wireless protocols
(Wi-Fi, ZigBee, 6LoWPAN, etc.) and/or any of a variety of
custom or standard wired protocols (CAT6 Ethernet, Home-
Plug, etc.).

According to embodiments, all or some of the smart
devices can serve as wireless or wired repeaters. For
example, a first one of the smart devices can communicate
with a second one of the smart device via a wireless router
60. The smart devices can further communicate with each
other via a connection to a network, such as the Internet 62.
Through the Internet 62, the smart devices can communicate
with a central server or a cloud-computing system 64. The
central server or cloud-computing system 64 can be asso-
ciated with a manufacturer, support entity, or service pro-
vider associated with the device. For one embodiment, a
user may be able to contact customer support using a device
itself rather than needing to use other communication means
such as a telephone or Internet-connected computer. Further,
software updates can be automatically sent from the central
server or cloud-computing system 64 to devices (e.g., when
available, when purchased, or at routine intervals).

According to embodiments, the smart devices combine to
create a mesh network of spokesman and low-power nodes
in the smart-home environment 30, where some of the smart
devices are “spokesman” nodes and others are “low-pow-
ered” nodes. Some of the smart devices in the smart-home
environment 30 are battery powered, while others have a
regular and reliable power source, such as by connecting to
wiring (e.g., to 120V line voltage wires) behind the walls 40
of the smart-home environment. The smart devices that have
a regular and reliable power source are referred to as
“spokesman” nodes. These nodes are equipped with the

20

30

40

45

55

12

capability of using any wireless protocol or manner to
facilitate bidirectional communication with any of a variety
of other devices in the smart-home environment 30 as well
as with the central server or cloud-computing system 64. On
the other hand, the devices that are battery powered are
referred to as “low-power” nodes. These nodes tend to be
smaller than spokesman nodes and can only communicate
using wireless protocols that requires very little power, such
as Zigbee, 6LoWPAN;, etc. Further, some, but not all,
low-power nodes are incapable of bidirectional communi-
cation. These low-power nodes send messages, but they are
unable to “listen”. Thus, other devices in the smart-home
environment 30, such as the spokesman nodes, cannot send
information to these low-power nodes.

As described, the smart devices serve as low-power and
spokesman nodes to create a mesh network in the smart-
home environment 30. Individual low-power nodes in the
smart-home environment regularly send out messages
regarding what they are sensing, and the other low-powered
nodes in the smart-home environment—in addition to send-
ing out their own messages—repeat the messages, thereby
causing the messages to travel from node to node (i.e.,
device to device) throughout the smart-home environment
30. The spokesman nodes in the smart-home environment 30
are able to “drop down” to low-powered communication
protocols to receive these messages, translate the messages
to other communication protocols, and send the translated
messages to other spokesman nodes and/or the central server
or cloud-computing system 64. Thus, the low-powered
nodes using low-power communication protocols are able to
send messages across the entire smart-home environment 30
as well as over the Internet 62 to the central server or
cloud-computing system 64. According to embodiments, the
mesh network enables the central server or cloud-computing
system 64 to regularly receive data from all of the smart
devices in the home, make inferences based on the data, and
send commands back to one of the smart devices to accom-
plish some of the smart-home objectives described herein.

As described, the spokesman nodes and some of the
low-powered nodes are capable of “listening”. Accordingly,
users, other devices, and the central server or cloud-com-
puting system 64 can communicate controls to the low-
powered nodes. For example, a user can use the portable
electronic device (e.g., a smartphone) 66 to send commands
over the Internet 62 to the central server or cloud-computing
system 64, which then relays the commands to the spokes-
man nodes in the smart-home environment 30. The spokes-
man nodes drop down to a low-power protocol to commu-
nicate the commands to the low-power nodes throughout the
smart-home environment, as well as to other spokesman
nodes that did not receive the commands directly from the
central server or cloud-computing system 64.

An example of a low-power node is a smart night light 65.
In addition to housing a light source, the smart night light 65
houses an occupancy sensor, such as an ultrasonic or passive
IR sensor, and an ambient light sensor, such as a photore-
sistor or a single-pixel sensor that measures light in the
room. In some embodiments, the smart night light 65 is
configured to activate the light source when its ambient light
sensor detects that the room is dark and when its occupancy
sensor detects that someone is in the room. In other embodi-
ments, the smart night light 65 is simply configured to
activate the light source when its ambient light sensor
detects that the room is dark. Further, according to embodi-
ments, the smart night light 65 includes a low-power wire-
less communication chip (e.g., ZigBee chip) that regularly
sends out messages regarding the occupancy of the room

US 9,491,571 B2

13

and the amount of light in the room, including instantaneous
messages coincident with the occupancy sensor detecting
the presence of a person in the room. As mentioned above,
these messages may be sent wirelessly, using the mesh
network, from node to node (i.e., smart device to smart
device) within the smart-home environment 30 as well as
over the Internet 62 to the central server or cloud-computing
system 64.

Other examples of low-powered nodes include battery-
operated versions of the smart hazard detectors 50. These
smart hazard detectors 50 are often located in an area
without access to constant and reliable power and, as dis-
cussed in detail below, may include any number and type of
sensors, such as smoke/fire/heat sensors, carbon monoxide/
dioxide sensors, occupancy/motion sensors, ambient light
sensors, temperature sensors, humidity sensors, and the like.
Furthermore, smart hazard detectors 50 can send messages
that correspond to each of the respective sensors to the other
devices and the central server or cloud-computing system
64, such as by using the mesh network as described above.

Examples of spokesman nodes include smart thermostats
46, smart doorbells 52, smart wall switches 54, and smart
wall plugs 56. These devices 46, 52, 54, and 56 are often
located near and connected to a reliable power source, and
therefore can include more power-consuming components,
such as one or more communication chips capable of
bidirectional communication in any variety of protocols.

In some embodiments, these low-powered and spokesman
nodes (e.g., devices 46, 50, 52, 54, 56, 58, and 65) can
function as “tripwires” for an alarm system in the smart-
home environment. For example, in the event a perpetrator
circumvents detection by alarm sensors located at windows,
doors, and other entry points of the smart-home environment
30, the alarm could be triggered upon receiving an occu-
pancy, motion, heat, sound, etc. message from one or more
of the low-powered and spokesman nodes in the mesh
network. For example, upon receiving a message from a
smart night light 65 indicating the presence of a person, the
central server or cloud-computing system 64 or some other
device could trigger an alarm, provided the alarm is armed
at the time of detection. Thus, the alarm system could be
enhanced by various low-powered and spokesman nodes
located throughout the smart-home environment 30. In this
example, a user could enhance the security of the smart-
home environment 30 by buying and installing extra smart
nightlights 65. However, in a scenario where the perpetrator
uses a radio transceiver to jam the wireless network, the
devices 10 may be incapable of communicating with each
other. Therefore, as discussed in detail below, the present
techniques provide network communication jamming attack
detection and notification solutions to such a problem.

In some embodiments, the mesh network can be used to
automatically turn on and off lights as a person transitions
from room to room. For example, the low-powered and
spokesman nodes detect the person’s movement through the
smart-home environment and communicate corresponding
messages through the mesh network. Using the messages
that indicate which rooms are occupied, the central server or
cloud-computing system 64 or some other device activates
and deactivates the smart wall switches 54 to automatically
provide light as the person moves from room to room in the
smart-home environment 30. Further, users may provide
pre-configuration information that indicates which smart
wall plugs 56 provide power to lamps and other light
sources, such as the smart night light 65. Alternatively, this
mapping of light sources to wall plugs 56 can be done
automatically (e.g., the smart wall plugs 56 detect when a

10

15

20

25

30

35

40

45

50

55

60

65

14

light source is plugged into it, and it sends a corresponding
message to the central server or cloud-computing system
64). Using this mapping information in combination with
messages that indicate which rooms are occupied, the central
server or cloud-computing system 64 or some other device
activates and deactivates the smart wall plugs 56 that
provide power to lamps and other light sources so as to track
the person’s movement and provide light as the person
moves from room to room.

In some embodiments, the mesh network of low-powered
and spokesman nodes can be used to provide exit lighting in
the event of an emergency. In some instances, to facilitate
this, users provide pre-configuration information that indi-
cates exit routes in the smart-home environment 30. For
example, for each room in the house, the user provides a
map of the best exit route. It should be appreciated that
instead of a user providing this information, the central
server or cloud-computing system 64 or some other device
could automatically determine the routes using uploaded
maps, diagrams, architectural drawings of the smart-home
house, as well as using a map generated based on positional
information obtained from the nodes of the mesh network
(e.g., positional information from the devices is used to
construct a map of the house). In operation, when an alarm
is activated (e.g., when one or more of the smart hazard
detector 50 detects smoke and activates an alarm), the
central server or cloud-computing system 64 or some other
device uses occupancy information obtained from the low-
powered and spokesman nodes to determine which rooms
are occupied and then turns on lights (e.g., nightlights 65,
wall switches 54, wall plugs 56 that power lamps, etc.) along
the exit routes from the occupied rooms so as to provide
emergency exit lighting.

Further included and illustrated in the smart-home envi-
ronment 30 of FIG. 2 are service robots 69 each configured
to carry out, in an autonomous manner, any of a variety of
household tasks. For some embodiments, the service robots
69 can be respectively configured to perform floor sweeping,
floor washing, etc. in a manner similar to that of known
commercially available devices such as the ROOMBA™
and SCOOBA™ products sold by iRobot, Inc. of Bedford,
Mass. Tasks such as floor sweeping and floor washing can be
considered as “away” or “while-away” tasks for purposes of
the instant description, as it is generally more desirable for
these tasks to be performed when the occupants are not
present. For other embodiments, one or more of the service
robots 69 are configured to perform tasks such as playing
music for an occupant, serving as a localized thermostat for
an occupant, serving as a localized air monitor/purifier for an
occupant, serving as a localized baby monitor, serving as a
localized hazard detector for an occupant, and so forth, it
being generally more desirable for such tasks to be carried
out in the immediate presence of the human occupant. For
purposes of the instant description, such tasks can be con-
sidered as “human-facing” or “human-centric” tasks.

When serving as a localized thermostat for an occupant,
a particular one of the service robots 69 can be considered
to be facilitating what can be called a “personal comfort-area
network” for the occupant, with the objective being to keep
the occupant’s immediate space at a comfortable tempera-
ture wherever that occupant may be located in the home.
This can be contrasted with conventional wall-mounted
room thermostats, which have the more attenuated objective
of keeping a statically-defined structural space at a comfort-
able temperature. According to one embodiment, the local-
ized-thermostat service robot 69 is configured to move itself
into the immediate presence (e.g., within five feet) of a

US 9,491,571 B2

15

particular occupant who has settled into a particular location
in the home (e.g. in the dining room to eat their breakfast and
read the news). The localized-thermostat service robot 69
includes a temperature sensor, a processor, and wireless
communication components configured such that control
communications with the HVAC system, either directly or
through a wall-mounted wirelessly communicating thermo-
stat coupled to the HVAC system, are maintained and such
that the temperature in the immediate vicinity of the occu-
pant is maintained at their desired level. If the occupant then
moves and settles into another location (e.g. to the living
room couch to watch television), the localized-thermostat
service robot 69 proceeds to move and park itself next to the
couch and keep that particular immediate space at a com-
fortable temperature.

Technologies by which the localized-thermostat service
robot 69 (and/or the larger smart-home system of FIG. 2) can
identify and locate the occupant whose personal-area space
is to be kept at a comfortable temperature can include, but
are not limited to, RFID sensing (e.g., person having an
RFID bracelet, RFID necklace, or RFID key fob), synthetic
vision techniques (e.g., video cameras and face recognition
processors), audio techniques (e.g., voice, sound pattern,
vibration pattern recognition), ultrasound sensing/imaging
techniques, and infrared or near-field communication (NFC)
techniques (e.g., person wearing an infrared or NFC-capable
smartphone), along with rules-based inference engines or
artificial intelligence techniques that draw useful conclu-
sions from the sensed information (e.g., if there is only a
single occupant present in the home, then that is the person
whose immediate space should be kept at a comfortable
temperature, and the selection of the desired comfortable
temperature should correspond to that occupant’s particular
stored profile).

When serving as a localized air monitor/purifier for an
occupant, a particular service robot 69 can be considered to
be facilitating what can be called a “personal health-area
network” for the occupant, with the objective being to keep
the air quality in the occupant’s immediate space at healthy
levels. Alternatively or in conjunction therewith, other
health-related functions can be provided, such as monitoring
the temperature or heart rate of the occupant (e.g., using
finely remote sensors, near-field communication with on-
person monitors, etc.). When serving as a localized hazard
detector for an occupant, a particular service robot 69 can be
considered to be facilitating what can be called a “personal
safety-area network™ for the occupant, with the objective
being to ensure there is no excessive carbon monoxide,
smoke, fire, etc., in the immediate space of the occupant.
Methods analogous to those described above for personal
comfort-area networks in terms of occupant identifying and
tracking are likewise applicable for personal health-area
network and personal safety-area network embodiments.

According to some embodiments, the above-referenced
facilitation of personal comfort-area networks, personal
health-area networks, personal safety-area networks, and/or
other such human-facing functionalities of the service robots
69, are further enhanced by logical integration with other
smart sensors in the home according to rules-based infer-
encing techniques or artificial intelligence techniques for
achieving better performance of those human-facing func-
tionalities and/or for achieving those goals in energy-con-
serving or other resource-conserving ways. Thus, for one
embodiment relating to personal health-area networks, the
air monitor/purifier service robot 69 can be configured to
detect whether a household pet is moving toward the cur-
rently settled location of the occupant (e.g., using on-board

10

15

20

25

30

35

40

45

50

55

60

65

16

sensors and/or by data communications with other smart-
home sensors along with rules-based inferencing/artificial
intelligence techniques), and if so, the air puritying rate is
immediately increased in preparation for the arrival of more
airborne pet dander. For another embodiment relating to
personal safety-area networks, the hazard detector service
robot 69 can be advised by other smart-home sensors that the
temperature and humidity levels are rising in the kitchen,
which is nearby to the occupant’s current dining room
location, and responsive to this advisory the hazard detector
service robot 69 will temporarily raise a hazard detection
threshold, such as a smoke detection threshold, under an
inference that any small increases in ambient smoke levels
will most likely be due to cooking activity and not due to a
genuinely hazardous condition.

The above-described “human-facing” and “away” func-
tionalities can be provided, without limitation, by multiple
distinct service robots 69 having respective dedicated ones
of such functionalities, by a single service robot 69 having
an integration of two or more different ones of such func-
tionalities, and/or any combinations thereof (including the
ability for a single service robot 69 to have both “away” and
“human facing” functionalities) without departing from the
scope of the present teachings. Electrical power can be
provided by virtue of rechargeable batteries or other
rechargeable methods, such as an out-of-the-way docking
station to which the service robots 69 will automatically
dock and recharge its batteries (if needed) during periods of
inactivity. Preferably, each service robot 69 includes wire-
less communication components that facilitate data commu-
nications with one or more of the other wirelessly commu-
nicating smart-home sensors of FIG. 2 and/or with one or
more other service robots 69 (e.g., using Wi-Fi, Zigbee,
Z-Wave, 6LoWPAN, etc.), and one or more of the smart-
home devices 10 can be in communication with a remote
server over the Internet. Alternatively or in conjunction
therewith, each service robot 69 can be configured to com-
municate directly with a remote server by virtue of cellular
telephone communications, satellite communications,
3G/4G network data communications, or other direct com-
munication method.

Provided according to some embodiments are systems
and methods relating to the integration of the service robot
(s) 69 with home security sensors and related functionalities
of'the smart home system. The embodiments are particularly
applicable and advantageous when applied for those service
robots 69 that perform “away” functionalities or that other-
wise are desirable to be active when the home is unoccupied
(hereinafter “away-service robots™). Included in the embodi-
ments are methods and systems for ensuring that home
security systems, intrusion detection systems, and/or occu-
pancy-sensitive environmental control systems (for
example, occupancy-sensitive automated setback thermo-
stats that enter into a lower-energy-using condition when the
home is unoccupied) are not erroneously triggered by the
away-service robots.

Provided according to one embodiment is a home auto-
mation and security system (e.g., as shown in FIG. 2) that is
remotely monitored by a monitoring service by virtue of
automated systems (e.g., cloud-based servers or other cen-
tral servers, hereinafter “central server”) that are in data
communications with one or more network-connected ele-
ments of the home automation and security system. The
away-service robots are configured to be in operative data
communication with the central server, and are configured
such that they remain in a non-away-service state (e.g., a
dormant state at their docking station) unless permission is

US 9,491,571 B2

17

granted from the central server (e.g., by virtue of an “away-
service-OK” message from the central server) to commence
their away-service activities. An away-state determination
made by the system, which can be arrived at (i) exclusively
by local on-premises smart device(s) based on occupancy
sensor data, (ii) exclusively by the central server based on
received occupancy sensor data and/or based on received
proximity-related information such as GPS coordinates from
user smartphones or automobiles, or (iii) any combination of
(1) and (ii) can then trigger the granting of away-service
permission to the away-service robots by the central server.
During the course of the away-service robot activity, during
which the away-service robots may continuously detect and
send their in-home location coordinates to the central server,
the central server can readily filter signals from the occu-
pancy sensing devices to distinguish between the away-
service robot activity versus any unexpected intrusion activ-
ity, thereby avoiding a false intrusion alarm condition while
also ensuring that the home is secure. Alternatively or in
conjunction therewith, the central server may provide filter-
ing data (such as an expected occupancy-sensing profile
triggered by the away-service robots) to the occupancy
sensing nodes or associated processing nodes of the smart
home, such that the filtering is performed at the local level.
Although somewhat less secure, it would also be within the
scope of the present teachings for the central server to
temporarily disable the occupancy sensing equipment for the
duration of the away-service robot activity.

According to another embodiment, functionality similar
to that of the central server in the above example can be
performed by an on-site computing device such as a dedi-
cated server computer, a “master” home automation console
or panel, or as an adjunct function of one or more of the
smart-home devices of FIG. 2. In such an embodiment, there
would be no dependency on a remote service provider to
provide the “away-service-OK” permission to the away-
service robots and the false-alarm-avoidance filtering ser-
vice or filter information for the sensed intrusion detection
signals.

According to other embodiments, there are provided
methods and systems for implementing away-service robot
functionality while avoiding false home security alarms and
false occupancy-sensitive environmental controls without
the requirement of a single overall event orchestrator. For
purposes of the simplicity in the present disclosure, the
home security systems and/or occupancy-sensitive environ-
mental controls that would be triggered by the motion, noise,
vibrations, or other disturbances of the away-service robot
activity are referenced simply as “activity sensing systems,”
and when so triggered will yield a “disturbance-detected”
outcome representative of the false trigger (for example, an
alarm message to a security service, or an “arrival” deter-
mination for an automated setback thermostat that causes the
home to be heated or cooled to a more comfortable “occu-
pied” setpoint temperature). According to one embodiment,
the away-service robots are configured to emit a standard
ultrasonic sound throughout the course of their away-service
activity, the activity sensing systems are configured to detect
that standard ultrasonic sound, and the activity sensing
systems are further configured such that no disturbance-
detected outcome will occur for as long as that standard
ultrasonic sound is detected. For other embodiments, the
away-service robots are configured to emit a standard noti-
fication signal throughout the course of their away-service
activity, the activity sensing systems are configured to detect
that standard notification signal, and the activity sensing
systems are further configured such that no disturbance-

10

15

20

25

30

35

40

45

50

55

60

65

18

detected outcome will occur for as long as that standard
notification signal is detected, wherein the standard notifi-
cation signal comprises one or more of: an optical notifying
signal; an audible notifying signal; an infrared notifying
signal; an infrasonic notifying signal; a wirelessly transmit-
ted data notification signal (e.g., an IP broadcast, multicast,
or unicast notification signal, or a notification message sent
in an TCP/IP two-way communication session).

According to some embodiments, the notification signals
sent by the away-service robots to the activity sensing
systems are authenticated and encrypted such that the noti-
fications cannot be learned and replicated by a potential
burglar. Any of a variety of known encryption/authentication
schemes can be used to ensure such data security including,
but not limited to, methods involving third party data
security services or certificate authorities. For some embodi-
ments, a permission request-response model can be used,
wherein any particular away-service robot requests permis-
sion from each activity sensing system in the home when it
is ready to perform its away-service tasks, and does not
initiate such activity until receiving a “yes” or “permission
granted” message from each activity sensing system (or
from a single activity sensing system serving as a “spokes-
man” for all of the activity sensing systems). One advantage
of the described embodiments that do not require a central
event orchestrator is that there can (optionally) be more of
an arms-length relationship between the supplier(s) of the
home security/environmental control equipment, on the one
hand, and the supplier(s) of the away-service robot(s), on the
other hand, as it is only required that there is the described
standard one-way notification protocol or the described
standard two-way request/permission protocol to be agreed
upon by the respective suppliers.

According to still other embodiments, the activity sensing
systems are configured to detect sounds, vibrations, RF
emissions, or other detectable environmental signals or
“signatures” that are intrinsically associated with the away-
service activity of each away-service robot, and are further
configured such that no disturbance-detected outcome will
occur for as long as that particular detectable signal or
environmental “signature” is detected. By way of example,
a particular kind of vacuum-cleaning away-service robot
may emit a specific sound or RF signature. For one embodi-
ment, the away-service environmental signatures for each of
a plurality of known away-service robots are stored in the
memory of the activity sensing systems based on empirically
collected data, the environmental signatures being supplied
with the activity sensing systems and periodically updated
by a remote update server. For another embodiment, the
activity sensing systems can be placed into a “training
mode” for the particular home in which they are installed,
wherein they “listen” and “learn” the particular environmen-
tal signatures of the away-service robots for that home
during that training session, and thereafter will suppress
disturbance-detected outcomes for intervals in which those
environmental signatures are heard.

For still another embodiment, which is particularly useful
when the activity sensing system is associated with occu-
pancy-sensitive environmental control equipment rather
than a home security system, the activity sensing system is
configured to automatically learn the environmental signa-
tures for the away-service robots by virtue of automatically
performing correlations over time between detected envi-
ronmental signatures and detected occupancy activity. By
way of example, for one embodiment an intelligent auto-
mated nonoccupancy-triggered setback thermostat such as
the Nest Learning Thermostat can be configured to con-

US 9,491,571 B2

19

stantly monitor for audible and RF activity as well as to
perform infrared-based occupancy detection. In particular
view of the fact that the environmental signature of the
away-service robot will remain relatively constant from
event to event, and in view of the fact that the away-service
events will likely either (a) themselves be triggered by some
sort of nonoccupancy condition as measured by the away-
service robots themselves, or (b) occur at regular times of
day, there will be patterns in the collected data by which the
events themselves will become apparent and for which the
environmental signatures can be readily learned. Generally
speaking, for this automatic-learning embodiment in which
the environmental signatures of the away-service robots are
automatically learned without requiring user interaction, it is
more preferable that a certain number of false triggers be
tolerable over the course of the learning process. Accord-
ingly, this automatic-learning embodiment is more prefer-
able for application in occupancy-sensitive environmental
control equipment (such as an automated setback thermo-
stat) rather than home security systems for the reason that a
few false occupancy determinations may cause a few
instances of unnecessary heating or cooling, but will not
otherwise have any serious consequences, whereas false
home security alarms may have more serious consequences.

According to embodiments, technologies including the
sensors of the smart devices located in the mesh network of
the smart-home environment in combination with rules-
based inference engines or artificial intelligence provided at
the central server or cloud-computing system 64 are used to
provide a personal “smart alarm clock™ for individual occu-
pants of the home. For example, user-occupants can com-
municate with the central server or cloud-computing system
64 via their mobile devices 66 to access an interface for the
smart alarm clock. There, occupants can turn on their “smart
alarm clock” and input a wake time for the next day and/or
for additional days. In some embodiments, the occupant may
have the option of setting a specific wake time for each day
of the week, as well as the option of setting some or all of
the inputted wake times to “repeat”. Artificial intelligence
will be used to consider the occupant’s response to these
alarms when they go off and make inferences about the
user’s preferred sleep patterns over time.

According to embodiments, the smart device in the smart-
home environment 30 that happens to be closest to the
occupant when the occupant falls asleep will be the device
that transmits messages regarding when the occupant
stopped moving, from which the central server or cloud-
computing system 64 will make inferences about where and
when the occupant prefers to sleep. This closest smart device
will as be the device that sounds the alarm to wake the
occupant. In this manner, the “smart alarm clock” will
follow the occupant throughout the house, by tracking the
individual occupants based on their “unique signature”,
which is determined based on data obtained from sensors
located in the smart devices. For example, the sensors
include ultrasonic sensors, passive IR sensors, and the like.
The unique signature is based on a combination of walking
gate, patterns of movement, voice, height, size, etc. It should
be appreciated that facial recognition may also be used.

According to an embodiment, the wake times associated
with the “smart alarm clock™ are used by the smart thermo-
stat 46 to control the HVAC in an efficient manner so as to
pre-heat or cool the house to the occupant’s desired “sleep-
ing” and “awake” temperature settings. The preferred set-
tings can be learned over time, such as by observing which

40

45

20

temperature the occupant sets the thermostat to before going
to sleep and which temperature the occupant sets the ther-
mostat to upon waking up.

According to an embodiment, a device is positioned
proximate to the occupant’s bed, such as on an adjacent
nightstand, and collects data as the occupant sleeps using
noise sensors, motion sensors (e.g., ultrasonic, IR, and
optical), etc. Data may be obtained by the other smart
devices in the room as well. Such data may include the
occupant’s breathing patterns, heart rate, movement, etc.
Inferences are made based on this data in combination with
data that indicates when the occupant actually wakes up. For
example, if—on a regular basis—the occupant’s heart rate,
breathing, and moving all increase by 5% to 10%, twenty to
thirty minutes before the occupant wakes up each morning,
then predictions can be made regarding when the occupant
is going to wake. Other devices in the home can use these
predictions to provide other smart-home objectives, such as
adjusting the smart thermostat 46 so as to pre-heat or cool
the home to the occupant’s desired setting before the occu-
pant wakes up. Further, these predictions can be used to set
the “smart alarm clock™ for the occupant, to turn on lights,
etc.

According to embodiments, technologies including the
sensors of the smart devices located throughout the smart-
home environment in combination with rules-based infer-
ence engines or artificial intelligence provided at the central
server or cloud-computing system 64 are used to detect or
monitor the progress of Alzheimer’s Disease. For example,
the unique signatures of the occupants are used to track the
individual occupants” movement throughout the smart-home
environment 30. This data can be aggregated and analyzed
to identify patterns indicative of Alzheimer’s. Oftentimes,
individuals with Alzheimer’s have distinctive patterns of
migration in their homes. For example, a person will walk to
the kitchen and stand there for a while, then to the living
room and stand there for a while, and then back to the
kitchen. This pattern will take about thirty minutes, and then
the person will repeat the pattern. According to embodi-
ments, the remote servers or cloud computing architectures
64 analyze the person’s migration data collected by the mesh
network of the smart-home environment to identify such
patterns.

In addition, FIG. 3 illustrates an embodiment of an
extensible devices and services platform 80 that can be
concentrated at a single server or distributed among several
different computing entities without limitation with respect
to the smart-home environment 30. The extensible devices
and services platform 80 may include a processing engine
86, which may include engines that receive data from
devices of smart-home environments (e.g., via the Internet
or a hubbed network), to index the data, to analyze the data
and/or to generate statistics based on the analysis or as part
of the analysis. The analyzed data can be stored as derived
home data 88.

Results of the analysis or statistics can thereafter be
transmitted back to the device that provided home data used
to derive the results, to other devices, to a server providing
a web page to a user of the device, or to other non-device
entities. For example, use statistics, use statistics relative to
use of other devices, use patterns, and/or statistics summa-
rizing sensor readings can be generated by the processing
engine 86 and transmitted. The results or statistics can be
provided via the Internet 62. In this manner, the processing
engine 86 can be configured and programmed to derive a
variety of useful information from the home data 82. A
single server can include one or more engines.

US 9,491,571 B2

21

The derived data can be highly beneficial at a variety of
different granularities for a variety of useful purposes,
ranging from explicit programmed control of the devices on
a per-home, per-neighborhood, or per-region basis (for
example, demand-response programs for electrical utilities),
to the generation of inferential abstractions that can assist on
a per-home basis (for example, an inference can be drawn
that the homeowner has left for vacation and so security
detection equipment can be put on heightened sensitivity), to
the generation of statistics and associated inferential abstrac-
tions that can be used for government or charitable purposes.
For example, processing engine 86 can generate statistics
about device usage across a population of devices and send
the statistics to device users, service providers or other
entities (e.g., that have requested or may have provided
monetary compensation for the statistics).

According to some embodiments, the home data 82, the
derived home data 88, and/or another data can be used to
create “automated neighborhood safety networks.” For
example, in the event the central server or cloud-computing
architecture 64 receives data indicating that a particular
home has been broken into, is experiencing a fire, or some
other type of emergency event, an alarm is sent to other
smart homes in the “neighborhood.” In some instances, the
central server or cloud-computing architecture 64 automati-
cally identifies smart homes within a radius of the home
experiencing the emergency and sends an alarm to the
identified homes. In such instances, the other homes in the
“neighborhood” do not have to sign up for or register to be
a part of a safety network, but instead are notified of an
emergency based on their proximity to the location of the
emergency. This creates robust and evolving neighborhood
security watch networks, such that if one person’s home is
getting broken into, an alarm can be sent to nearby homes,
such as by audio announcements via the smart devices
located in those homes. It should be appreciated that this can
be an opt-in service and that, in addition to or instead of the
central server or cloud-computing architecture 64 selecting
which homes to send alerts to, individuals can subscribe to
participate in such networks and individuals can specify
which homes they want to receive alerts from. This can
include, for example, the homes of family members who live
in different cities, such that individuals can receive alerts
when their loved ones in other locations are experiencing an
emergency.

According to some embodiments, sound, vibration, and/or
motion sensing components of the smart devices are used to
detect sound, vibration, and/or motion created by running
water. Based on the detected sound, vibration, and/or
motion, the central server or cloud-computing architecture
64 makes inferences about water usage in the home and
provides related services. For example, the central server or
cloud-computing architecture 64 can run programs/algo-
rithms that recognize what water sounds like and when it is
running in the home. According to one embodiment, to map
the various water sources of the home, upon detecting
running water, the central server or cloud-computing archi-
tecture 64 sends a message an occupant’s mobile device
asking if water is currently running or if water has been
recently run in the home and, if so, which room and which
water-consumption appliance (e.g., sink, shower, toilet, etc.)
was the source of the water. This enables the central server
or cloud-computing architecture 64 to determine the “sig-
nature” or “fingerprint” of each water source in the home.
This is sometimes referred to herein as “audio fingerprinting
water usage.”

20

40

45

22

In one illustrative example, the central server or cloud-
computing architecture 64 creates a signature for the toilet in
the master bathroom, and whenever that toilet is flushed, the
central server or cloud-computing architecture 64 will know
that the water usage at that time is associated with that toilet.
Thus, the central server or cloud-computing architecture 64
can track the water usage of that toilet as well as each
water-consumption application in the home. This informa-
tion can be correlated to water bills or smart water meters so
as to provide users with a breakdown of their water usage.

According to some embodiments, sound, vibration, and/or
motion sensing components of the smart devices are used to
detect sound, vibration, and/or motion created by mice and
other rodents as well as by termites, cockroaches, and other
insects (collectively referred to as “pests”). Based on the
detected sound, vibration, and/or motion, the central server
or cloud-computing architecture 64 makes inferences about
pest-detection in the home and provides related services. For
example, the central server or cloud-computing architecture
64 can run programs/algorithms that recognize what certain
pests sound like, how they move, and/or the vibration they
create, individually and/or collectively. According to one
embodiment, the central server or cloud-computing archi-
tecture 64 can determine the “signatures” of particular types
of pests.

For example, in the event the central server or cloud-
computing architecture 64 detects sounds that may be asso-
ciated with pests, it notifies the occupants of such sounds
and suggests hiring a pest control company. If it is confirmed
that pests are indeed present, the occupants input to the
central server or cloud-computing architecture 64 confirms
that its detection was correct, along with details regarding
the identified pests, such as name, type, description, loca-
tion, quantity, etc. This enables the central server or cloud-
computing architecture 64 to “tune” itself for better detec-
tion and create “signatures” or “fingerprints” for specific
types of pests. For example, the central server or cloud-
computing architecture 64 can use the tuning as well as the
signatures and fingerprints to detect pests in other homes,
such as nearby homes that may be experiencing problems
with the same pests. Further, for example, in the event that
two or more homes in a “neighborhood” are experiencing
problems with the same or similar types of pests, the central
server or cloud-computing architecture 64 can make infer-
ences that nearby homes may also have such problems or
may be susceptible to having such problems, and it can send
warning messages to those homes to help facilitate early
detection and prevention.

In some embodiments, to encourage innovation and
research and to increase products and services available to
users, the devices and services platform 80 expose a range
of application programming interfaces (APIs) 90 to third
parties, such as charities 94, governmental entities 96 (e.g.,
the Food and Drug Administration or the Environmental
Protection Agency), academic institutions 98 (e.g., univer-
sity researchers), businesses 100 (e.g., providing device
warranties or service to related equipment, targeting adver-
tisements based on home data), utility companies 102, and
other third parties. The APIs 90 are coupled to and permit
third party systems to communicate with the central server
or the cloud-computing system 64, including the services 84,
the processing engine 86, the home data 82, and the derived
home data 88. For example, the APIs 90 allow applications
executed by the third parties to initiate specific data pro-
cessing tasks that are executed by the central server or the
cloud-computing system 64, as well as to receive dynamic
updates to the home data 82 and the derived home data 88.

US 9,491,571 B2

23

For example, third parties can develop programs and/or
applications, such as web or mobile apps that integrate with
the central server or the cloud-computing system 64 to
provide services and information to users. Such programs
and application may be, for example, designed to help users
reduce energy consumption, to preemptively service faulty
equipment, to prepare for high service demands, to track
past service performance, etc., or to perform any of a variety
of beneficial functions or tasks now known or hereinafter
developed.

According to some embodiments, third party applications
make inferences from the home data 82 and the derived
home data 88, such inferences may include when are occu-
pants home, when are they sleeping, when are they cooking,
when are they in the den watching television, and when do
they shower. The answers to these questions may help
third-parties benefit consumers by providing them with
interesting information, products and services as well as
with providing them with targeted advertisements.

In one example, a shipping company creates an applica-
tion that makes inferences regarding when people are at
home. The application uses the inferences to schedule deliv-
eries for times when people will most likely be at home. The
application can also build delivery routes around these
scheduled times. This reduces the number of instances
where the shipping company has to make multiple attempts
to deliver packages, and it reduces the number of times
consumers have to pick up their packages from the shipping
company.

To further illustrate, FIG. 4 describes an abstracted func-
tional view 110 of the extensible devices and services
platform 80 of FIG. 3, with particular reference to the
processing engine 86 as well as devices, such as those of the
smart-home environment 30 of FIG. 2. Even though devices
situated in smart-home environments will have an endless
variety of different individual capabilities and limitations,
they can all be thought of as sharing common characteristics
in that each of them is a data consumer 112 (DC), a data
source 114 (DS), a services consumer 116 (SC), and a
services source 118 (SS). Advantageously, in addition to
providing the essential control information needed for the
devices to achieve their local and immediate objectives, the
extensible devices and services platform 80 can also be
configured to harness the large amount of data that is flowing
out of these devices. In addition to enhancing or optimizing
the actual operation of the devices themselves with respect
to their immediate functions, the extensible devices and
services platform 80 can be directed to “repurposing” that
data in a variety of automated, extensible, flexible, and/or
scalable ways to achieve a variety of useful objectives.
These objectives may be predefined or adaptively identified
based on, e.g., usage patterns, device efficiency, and/or user
input (e.g., requesting specific functionality).

For example, FIG. 4 shows processing engine 86 as
including a number of paradigms 120. Processing engine 86
can include a managed services paradigm 120a that moni-
tors and manages primary or secondary device functions.
The device functions can include ensuring proper operation
of a device given user inputs, estimating that (e.g., and
responding to an instance in which) an intruder is or is
attempting to be in a dwelling, detecting a failure of equip-
ment coupled to the device (e.g., a light bulb having burned
out), implementing or otherwise responding to energy
demand response events, or alerting a user of a current or
predicted future event or characteristic. Processing engine
86 can further include an advertising/communication para-
digm 1205 that estimates characteristics (e.g., demographic

10

15

20

25

30

35

40

45

50

55

60

65

24

information), desires and/or products of interest of a user
based on device usage. Services, promotions, products or
upgrades can then be offered or automatically provided to
the user. Processing engine 86 can further include a social
paradigm 120c that uses information from a social network,
provides information to a social network (for example,
based on device usage), and/or processes data associated
with user and/or device interactions with the social network
platform. For example, a user’s status as reported to their
trusted contacts on the social network could be updated to
indicate when they are home based on light detection,
security system inactivation or device usage detectors. As
another example, a user may be able to share device-usage
statistics with other users. In yet another example, a user
may share HVAC settings that result in low power bills and
other users may download the HVAC settings to their smart
thermostat 46 to reduce their power bills.

The processing engine 86 can include a challenges/rules/
compliance/rewards paradigm 1204 that informs a user of
challenges, competitions, rules, compliance regulations and/
or rewards and/or that uses operation data to determine
whether a challenge has been met, a rule or regulation has
been complied with and/or a reward has been earned. The
challenges, rules or regulations can relate to efforts to
conserve energy, to live safely (e.g., reducing exposure to
toxins or carcinogens), to conserve money and/or equipment
life, to improve health, etc. For example, one challenge may
involve participants turning down their thermostat by one
degree for one week. Those that successfully complete the
challenge are rewarded, such as by coupons, virtual cur-
rency, status, etc. Regarding compliance, an example
involves a rental-property owner making a rule that no
renters are permitted to access certain owner’s rooms. The
devices in the room having occupancy sensors could send
updates to the owner when the room is accessed.

The processing engine 86 can integrate or otherwise
utilize extrinsic information 122 from extrinsic sources to
improve the functioning of one or more processing para-
digms. Extrinsic information 122 can be used to interpret
data received from a device, to determine a characteristic of
the environment near the device (e.g., outside a structure that
the device is enclosed in), to determine services or products
available to the user, to identify a social network or social-
network information, to determine contact information of
entities (e.g., public-service entities such as an emergency-
response team, the police or a hospital) near the device, etc.,
to identify statistical or environmental conditions, trends or
other information associated with a home or neighborhood,
and so forth.

An extraordinary range and variety of benefits can be
brought about by, and fit within the scope of, the described
extensible devices and services platform 80, ranging from
the ordinary to the profound. Thus, in one “ordinary”
example, each bedroom of the smart-home environment 30
can be provided with a smart wall switch 54, a smart wall
plug 56, and/or smart hazard detectors 50, all or some of
which include an occupancy sensor, wherein the occupancy
sensor is also capable of inferring (e.g., by virtue of motion
detection, facial recognition, audible sound patterns, etc.)
whether the occupant is asleep or awake. If a serious fire
event is sensed, the remote security/monitoring service or
fire department is advised of how many occupants there are
in each bedroom, and whether those occupants are still
asleep (or immobile) or whether they have properly evacu-
ated the bedroom. While this is, of course, a very advanta-
geous capability accommodated by the described extensible
devices and services platform 80, there can be substantially

US 9,491,571 B2

25

more “profound” examples that can truly illustrate the
potential of a larger “intelligence” that can be made avail-
able. By way of perhaps a more “profound” example, the
same bedroom occupancy data that is being used for fire
safety can also be “repurposed” by the processing engine 86
in the context of a social paradigm of neighborhood child
development and education. Thus, for example, the same
bedroom occupancy and motion data discussed in the “ordi-
nary” example can be collected and made available (prop-
erly anonymized) for processing in which the sleep patterns
of schoolchildren in a particular ZIP code can be identified
and tracked. Localized variations in the sleeping patterns of
the schoolchildren may be identified and correlated, for
example, to different nutrition programs in local schools.

As previously discussed, the described extensible devices
and services platform 80 may enable communicating emer-
gency information between smart-home environments 30
that are linked and/or to the proper authorities. For example,
when a burglar breaks into a smart-home environment 30, a
home security system may trip and sound an alarm and/or
send emergency notifications to the neighbors, the police,
the security company, and the like. However, in instances
where the break in is preceded by a jamming attack on the
wireless network, the notifications may not be sent out if
their transmission is dependent upon the wireless network.
Thus, another means to communicate with external parties
may be desired. As such, the techniques disclosed herein
solve this problem by detecting the jamming attack and
sending emergency notifications via side channels that are
not dependent upon the wireless network.

API

Although programs, applications, and/or application ser-
vices may be used to communicate requests or commands to
the smart home devices 10, in some embodiments these may
not be sent directly to the smart home devices 10. The
following figures illustrate smart device communication
and/or control via an application accessing an APIL.

For example, FIG. 5 illustrates a system 140 where an API
may be used to access and/or control one or more smart
devices. In the illustrated example, a person may desire to
access a number of smart home devices 10, such as a first
smart home device (e.g. thermostat 10A) and second smart
home devices (e.g., Smoke and/or CO detector 10B). In the
example of FIG. 5, the first smart home device 10A is an
example of a smart thermostat, such as the Nest® Learning
Thermostat by Nest Labs, Inc. (a company of Google Inc.),
and the second smart home devices 10B are examples of
smart hazard detectors, such as the Nest® Protect by Nest
Labs, Inc. Two application programs are shown accessing
the smart home devices 10A and/or 10B through the device
service 84. Although FIG. 5 illustrates accessing the smart
home devices 10A and/or 10B using two separate applica-
tion programs, it should be appreciated that any suitable
number of application programs may be used to access the
smart home devices 10A and/or 10B.

In the example of FIG. 5, a first application 142 sends a
first device request message 144 targeted to a smart home
device 10 (e.g., the smart home device 10A) into cloud
service(s) 145 and, more specifically, to a first application
service 146. A second application 148 may be used to issue
a second device request message 150 targeted to a smart
home device 10 (e.g., the smart home device 10A) to a
second application service 152 also among the cloud service
(s) 145. In the example shown, the first application 142 is a
navigation application that sends estimated-time-of-arrival

20

25

30

40

45

26

(ETA) information in the device request messages 144. By
sending a number of ETA messages as the device request
messages 144, the first application 142 may be used to cause
the smart home devices 10A and/or 10B to be prepared when
a person arrives home. Thus, as an example, the first
application 142 may send occasional device request mes-
sages 144 indicating the ETA to the first application service
146, which may forward this information to the device
service 84 (e.g., via an API, as discussed above). The device
service 84 may hold the device request messages 144 from
the first application 142 until an appropriate time. In the
illustrated example, the second application 148 may be a
third party home-automation application that may be run-
ning on a portable electronic device, such as a personal
mobile device. The second application 148 may generate
device request messages 150, such as commands to control
or request information from the smart home devices 10A
and/or 10B. The second application service 152 may inter-
face with the device service 84 by way of an API, as
mentioned above.

Although the first application service 146, the second
application service 152, and the device service 84 are
illustrated in FIG. 5 as cloud service(s) 145, it may appre-
ciated that some or all of these services may run on elec-
tronic devices that are not remote cloud-computer systems
accessible by way of the Internet. Indeed, in some examples,
the device service 84 may not be on a network that is remote
from the smart home devices 10A and/or 10B, but rather
may be running on an electronic device in the same local
area network as the smart home devices 10A and/or 10B. For
example, the device service 84 may, additionally or alter-
natively, run on a local server computer and/or a local
wireless router on the same local area network as the smart
home devices 10A and/or 10B. Moreover, some applications
may communicate directly with the device service 84 (e.g.,
via the API) without first communicating with an application
service such as the first application service 146 or the second
application service 152.

Regardless of the number of applications that may issue
device request messages (e.g., 144 or 150) to the device
service 84, the device service 84 may not merely forward
these messages to the smart home devices 10A and/or 10B
that the device request messages are targeted too. Rather, the
device service 84 may serve as the point of contact that
application programs may use to access the smart home
devices 10A and/or 10B. The device service 84 then may
communicate information and/or commands provided by the
applications to the smart home devices 10A and/or 10B,
enabling coordination between the applications and the
devices 10A and/or 10B.

In some embodiments, to enable additional functionalities
in the applications (e.g., first application 142 and/or second
application 148), the smart home devices 10A and/or 10B
may occasionally transmit device operation status param-
eters 156 or other data based on the device operation status
parameters 156 through the device service 84 and the proper
application service (e.g., first application service 146 and/or
second application service 152) to the proper applications
(e.g., first application 142 and/or second application 148).

The device operation status parameters 156 may represent
any suitable characteristics of the operation status of the
smart home devices 10A and/or 10B that may affect the
proper functioning of the smart home devices 10A and/or
10B. Thus, the device operation status parameters 156 may
include, for example: a battery level 159 indicative of an
amount of charge remaining in a battery of the smart home
device; a charging rate 160 indicative of a current rate that

US 9,491,571 B2

27

the battery of the smart home device is charging; a current
device age 161 indicative of a period of use since initial
install, a period of use since manufacture, a period of use
since original sale, etc.; a planned lifespan 162 indicative of
an expected useful operational duration of the smart home
device; an amount of recent wireless use 163 (selected
within a timespan recent enough to substantially affect an
internal temperature of the smart home device 10); a direct
measurement of an internal device temperature 164; and/or
device operation status parameters for connected devices
165. The operational status parameters for connected
devices 165 may represent any suitable operational param-
eters that may describe the smart home devices 10 (e.g.,
smart home device 10A) through which the device service
84 may use to connect to a target smart home device 10 (e.g.,
one of the smart home devices 10B). For example, regarding
the operational status parameters for connected devices 165,
if the target smart home device 10 is the last smart home
device 10B through three smart home devices 10 in three
communication “hops”, the device operation status param-
eters 156 associated with these three intervening smart home
devices 10 may be included.

The various specific device operation status parameters
156 shown in FIG. 5 are provided by way of example. As
such, the device operation status parameters 156 shown in
FIG. 5 should not be understood to be exhaustive, but merely
representative of possible operational parameters that may
be considered for API-accessing applications. For example,
additional device operation status parameters may include
current state of the device (e.g., sleeping, awake, Wifi
active/inactive, executing a demand-response algorithm,
executing a time-to-temperature algorithm, etc.).

The smart thermostat 10A and/or detector 10B may
include a basic set of identifying information, such as: a
user-defined device name, physical location in the structure,
locale, software version and containing structure. The data
model also exposes thermostat capabilities, such as whether
the HVAC system can heat or cool, or has a fan. Further, the
thermostat 10A may include three states related to presence:
home, away or auto-away. In some embodiments, the AP1 90
may not expose the thermostat state, but may depend on this
state when using thermostat mode to set target temperature.
Thermostat 10A mode may have three “on” states (heat,
c00l, heat-cool) and one “off” state. The most common may
be “on” (home). In this mode the thermostat 10A will try to
keep the structure at a target temperature. A thermostat 10A
can also be in away mode, which is entered when no motion
is sensed in the house or when the user explicitly sets the
structure to away. In this mode, it will activate the HVAC
system if the temperature moves outside the defined “away”
temperature range. The thermostat 10A may also be set to
“off”. In this mode it will only activate the HVAC system if
the temperature moves outside a defined safety temperature
range.

In some embodiments, target temperature, the desired
temperature, typically set by the user may be modified using
the API 90. From the API 90, applications can write the
target temperature as part of a larger process.

For example, the applications may use the device opera-
tion status parameters 156 or data to affect subsequent
interactions (e.g., via messages 144 or 150) that are trans-
mitted to the smart home devices 10A and/or 10B. The
device operation status parameters 156 may correspond only
to a target smart home device 10 (e.g., the smart home
device 10A), or may correspond to other smart home devices
10 that are in the vicinity of the target smart home device 10
(e.g., the smart home device 10A and the smart home

20

30

40

45

28

devices 10B). In one example, when the target smart home
device 10 for the device request messages 144 and/or 150
are the smart home device 10A, the device operation status
parameters 156 may correspond substantially only to the
smart home device 10A. In another example, when the target
smart home device 10 is one of the smart home devices 10B,
which is accessible by way of the smart home device 10A,
the device operation status parameters 156 may contain
operational parameter information about both the smart
home device 10A and the smart home device 10B.

The second application 148 may include voice actions.
For example, a user input to the second application 148 may
be an audible cue to “Set [brand (e.g. ‘nest’)Ithermostat-
[temperature] to [nn] degrees.” The second application 148
may convert this into messages that ultimately become
commands to transition the desired temperature of the
thermostat 10A.

Further, an audible queue might be to “Turn on the heat.”
In such a scenario, the commands provided to the thermostat
10A would set the thermostat one degree Celsius above the
current ambient temperature. If the thermostat 10A is in
range mode, both the low and high points are raised one
degree Celsius.

Additionally, an audible queue might be to “Turn on the
[air conditioning|coolingla.c.].” In such a scenario, the com-
mands provided to the thermostat 10A would set the ther-
mostat one degree Celsius lower the current ambient tem-
perature. If the thermostat 10A is in range mode, both the
low and high points are lowered one degree Celsius.

In some embodiments, an audible queue might be to “set
[brand (e.g. ‘nest’)Ithermostat] to away.” In such a scenario,
the commands provided to the thermostat 10A would change
the mode of the thermostat 10A to “AWAY.” When the
audible queue is “set [brand (e.g. ‘nest’)lthermostat] to
home,” the commands provided to the thermostat 10A
would change the mode of the thermostat 10A to “HOME.”
1. Architecture

FIG. 6 illustrates a system 180 that uses an API 90 to
access one or more device services 84 to request data from,
control, and/or store data that may be useful to the smart
devices (e.g., thermostat 10A, smoke and/or CO detector
10B, and/or other device 10C). As discussed above, the
system 180 may be useful to enable one or more clients 182
(e.g., third-party client and/or a principle client of the device
service 84) to: provide data 184 for use in the device services
84 (e.g., to a data store (e.g., data warehouse 185), to storage
of one or more of the smart devices, and/or to a data model
of the device service 84), provide a request 186 to control
one or more of the smart devices via the device service 84,
and/or to receive data 188 from one or more of the smart
devices via the device service 84 (e.g., via providing a
subscription and/or particular data query request 190), upon
authorization from an authorization server (e.g., an addi-
tional service provided by services 191). As used herein, the
term “client,” “application programming interface (API)
client,” and “client application” may be used interchange-
ably and may refer to an integration point for the API 90
and/or device service 84. Further, it should be noted, as used
herein, the terms “client device,” “third party device,” and
“API client device” may be used interchangeably and refer
to an electronic device interfacing with the integration point
(e.g., client or API client).

In embodiments where a smart thermostat 10A is present,
the API 90 and/or device services 84 may be used to: view
a current temperature, view and/or set a target temperature,
set a fan timer, view and/or set temperature modes (e.g.,
“heating” and/or “cooling”), view humidity data, and/or

US 9,491,571 B2

29

view online status and/or last connection information. In
embodiments where a smoke and/or CO detector 10B is
present, the API 90 and/or device services 84 may be used
to view CO and/or smoke status, view battery health of the
detector 10B, view last manual test status and/or a time-
stamp for the last manual test, and/or view online status
and/or last connection information. Further, in embodiments
where a structure 10D (e.g., a smart home environment
containing smart devices) is associated with the device
service 84, the API 90 and/or device services 84 may be used
to: view a list of devices in the structure 10D, view energy
event status (e.g., whether the structure 10D is under a
preferable energy utilization period as defined by an energy
utility program (e.g., Rush Hour Rewards by Nest®)), view
and/or set an away state of the structure 10D, view a postal
or zip code of the structure 10D, and/or set an estimated time
of arrival to the structure 10. Many other data points may be
accessed and/or written to the devices via the API 90 and/or
device services 84.

To perform these functions, the client 182 may connect to
the API 90. In one embodiment, the API 90 may include one
or more hosts 192 that may receive and/or process the data
184 and/or the requests 186 and/or 190 in near real-time
and/or real-time. The hosts 192 may include a Firebase host
and/or one or more Representation State Transfer (REST)
hosts 196 (e.g. periodic REST and/or REST streaming
transactions).

Firebase organizes data as one large JSON document.
Using this scheme, the device service 84 can listen for
updates (e.g., insertions, deletions, modifications) on the
trees of data that the client 182 has access to and/or is
subscribed to, in order to synchronize these updates between
the clients 182 and/or the devices (e.g., 10A-10C) and/or
structures 10D.

Each data element is addressable by a Uniform Resource
Locator (URL). Each data element location can store strings,
numbers, Boolean values and/or parent/child objects or
arrays. Using the API 90, a user’s client can sync data from
locations at multiple levels in the hierarchy. For example, an
entire structure, including all devices, a single device in a
structure, a group of data values (e.g., current and ambient
temperatures), and/or a single data value (e.g., battery health
state). As mentioned above, these data locations may be
accessed by creating a client 182 application, using the client
libraries 198 and/or using streaming and/or traditional REST
communications.

A variety of access controls mechanisms are possible. As
will be discussed in more detail below, in some embodi-
ments, a custom login feature may be used to enable the
device service 84 provider to utilize customized authentica-
tion payloads to authorize access to the APIs 90 and/or
device services 84.

To provide data 184 and/or requests 186 and/or 190 to the
host 192 in a manner that the API 90 may understand, an
application of the client 182 may be constructed to provide
this data 184 and/or requests 186 and/or 190. Upon authen-
tication of access rights (which will be discussed in more
detail below), the application may utilize REST and/or client
libraries (e.g., Firebase client libraries 198) to subscribe to
data values via the API 90. When a subscribed data value
changes, the new data values are updated in real time and
stored as a standard JSON document. The client 182 may
then update and/or trigger an action based upon the sub-
scribed data. Further, when the client 182 wishes to write
data to the shared JSON document, the client 182 may
provide the request via REST and/or Firebase. Accordingly,

10

15

20

25

30

35

40

45

50

55

60

65

30

as mentioned above, the client 182 may generate and pro-
vide the data 184 and/or requests 186 and/or 190 as well as
receive data 188.

The requests 186 and/or 190 and/or the data 184 are
passed from the API 90 to the device service 84. The device
service 84 maintains a data model of all relevant structures
10D as well as the relevant smart devices (e.g., thermostats
10A, detectors 10B, and/or devices 10C) associated with
each of the structures 10D. The data model is generated and
updated in a subscription-based approach. For example, as
new structures 10D and/or smart devices (e.g., thermostats
10A, detectors 10B, and/or devices 10C) are activated, a
subscription may be registered between the smart devices
(e.g. 10A-10C) and/or the structure 10D and the device
service 84. Rather than require continual polling for new
and/or updated data, which may result in excessive heating
and/or battery consumption of the smart devices, the sub-
scription enables new and/or updated data provided to the
device service 84 (e.g., via the API 90) to be provided in
near-real time, upon changes to the data model maintained
by the device service 84.

FIG. 7 illustrates an embodiment of a process 248 for
providing data requests via the subscription-based device
service 84. First, a session between the data service 84 and
one or more subscribing devices (e.g. devices 10A-10C)
and/or structures 10D is created (block 250). The session
may be established for a predetermined period (e.g., 1 hour,
1 day, 1 week, etc.) and may be closed at any time by either
the subscribing device and/or the device service 84.

Next, when an interaction with the system 180 occurs, a
data request is received by the device service 84 (block 252).
In one embodiment, the data request may include a request
to retrieve particular smart device information and/or a
request to set particular smart device information. The
request may be provided, in some embodiments, via the API
90, based upon communications from a client 182.

Upon receiving the request, the device service may pro-
cess the request (block 254). For example, the device service
84 may update its maintained data model based upon the
request. In some embodiments, the JavaScript Object Nota-
tion (JSON) data format may be used to maintain the device
service 84’s data model. One or more translation modules
may translate non-JSON formatted data (e.g., tag-length-
field (TLV) formatted data) into the JSON data format.
Further details and examples of subscription services and
translation into a JSON data format and processing received
data are described in U.S. Ser. No. 61/627,996, filed Oct. 21,
2011, entitled “User friendly, network connected learning
thermostat and related systems and methods” and in U.S.
Ser. No. 14/508,884, filed Oct. 7, 2014, entitled “Systems
and Methods for Updating Data Across Multiple Network
Architectures,” which are both incorporated by reference
herein in their entirety for all purposes.

Next, the device service 84 may wake any subscribers of
the request (e.g., smart devices 10A-10C and/or structures
10D associated with the request) (block 256). In one
embodiment, the devices (e.g., thermostats 10A, detectors
10B, and/or devices 10C) and/or structures 10D may be
equipped with wake-on-LAN (WOL) functionality that
enables a device to sleep until particular data packets are
received at the WOL equipped device. Upon receiving these
particular packets, the devices may wake, and receive data
that is provided based upon the received request (block 258).
In some embodiments, packet filtering may be implemented
on the devices, such that only particular data packets will
wake the devices, helping to ensure that the devices are only
awoken when relevant data is received at the device 10A-

US 9,491,571 B2

31

10C and/or the structure 10D. Further, buffering may be
used to ensure that erroneous data is not used to wake the
devices and/or structure. For example, if the client 182 sends
a request to write a new target temperature to a thermostat
10A that is one degree above the current target temperature,
but then immediately sends another request that cancels the
prior request (e.g., reduces the target temperature down one
degree), the requests may be cancelled out without waking
the thermostat 10A (assuming both requests are received by
the device service 84 in a buffer window prior to the
thermostat 10A wake). In some embodiments, the buffer
window may be 2-3 seconds.

As mentioned above, data 188 may also be provided to the
client 182 from the smart devices (e.g., thermostat 10A,
detector 10B, and/or device 10C) and/or structures 10D. For
example, the client 182 may display and/or trigger actions
based upon received data from the smart devices and/or
structures 10D. FIG. 8 illustrates a process 280 for providing
data from smart devices and/or structures to a client 182. As
with the process 248 of FIG. 7, an http session is established
between the device service 84 and smart devices (e.g.,
thermostats 10A, detectors 10B, and/or devices 10C) and/or
structures 10D (block 280). Upon detecting a change of
relevant data in the smart devices and/or structures 10D
(decision block 284), the changed data is provided to the
device service 84 (block 286). The device service 84 then
updates the data model and provides the updates to the client
182 (block 288). The client 182 is then able to display the
updated data and/or trigger other actions based upon the
updated data.

In one example, a client may be created to interact with
a thermostat 10A (e.g., using the client libraries 198). The
client may be set up to monitor two values: current tem-
perature and target temperature. To obtain changes to these
two values, the client establishes a subscription to the
thermostat object in a structure 10D. Then, when the tem-
perature of the thermostat 10A is adjusted, the target tem-
perature changes and the device service 84 updates the data
model (e.g., JSON device and/or structure representation),
which may be synchronized with the client 182 in near-real
time. The client 182 may listen for changes and display a
new target temperature and/or update the current tempera-
ture as it changes at the thermostat 10A.

ii. Authorization and Permissions

The API 90 and device service 84 may provide informa-
tion to clients that may be used to build a better home
experience. However, that information is ultimately owned
by the user of the smart devices (e.g., thermostats 10A,
detectors 10B, and/or devices 10C) and can only be shared
with clients when the user explicitly allows it. Certain
permissions may enable a client to access resources in a
shared data model. As such, an authorization process may be
used to enable the user to grant permissions to clients
requesting to view and/or modify data associated with the
user’s smart devices (e.g., thermostats 10A, detectors 10B,
and/or devices 10C) in the data model using the authoriza-
tion server 191. The authorization process may use an open
protocol framework (e.g., OAuth 2.0) to allow secure autho-
rization of third party applications to obtain limited access to
an HTTP service.

The authorization server 191 may provide functionality
for managing the authorization code and access token grant-
ing processes, which will be described in more detail below.
There may be an authorization process for web-based and
PIN-based authorization. If a redirect universal resource
identifier (URI) was entered when the client was registered,
then a web-based authorization code may be in the redi-

25

30

35

40

45

60

32

rected URI as a code query parameter. If a redirect URI was
not entered when the client was registered, then a PIN-based
authorization code may be displayed in a web page. PIN
based authorization is generally used for devices with no
web user interface, and that have an alphanumeric keypad
interface.

The permissions may vary based on who the client is, the
type of data being requested, the type of access being
requested, and so forth. Indeed, in some embodiments, there
may be various scopes, or groups of predefined permissions
to certain data elements, that are assigned to the clients.
Access to resources may be tied to a session (an issued
access token). The end user may be asked to approve
granting a series of scopes as part of the session initiation
process. If the user approves the scopes, the permissions
associated with the scopes at the time of issue are tied to the
session for the lifetime of the session, as discussed in detail
below. Also, in some embodiments, the disclosed techniques
provide functionality to enable the client to insert their own
data into the data model using the device service 84 (e.g., via
the API 90), retrieve their own data from data model using
the device service 84 (e.g., via the API 90), or to allow the
client to authorize another third party to modify or view the
client’s data in the data model using the device service 84
(e.g., via the API 90).

FIG. 9 illustrates a flow diagram of a process 300 for a
user to authorize a client to access user data in the data
model via the device service 84, in accordance with an
embodiment. To interact with the user’s smart devices (e.g.,
thermostats 10A, detectors 10B, and/or devices 10C) by
manipulating data or viewing data in the data model, the user
must first agree to let the client access user device data. The
authorization process may begin with a link 301 to connect
to the device service 84 on a client site/app 302 that the user
may select. In response, a resource access permission page
304 and a login page 306 may be displayed that asks the user
to grant access to the client and/or sign in if not already
signed into an authorization server.

The resource access permission page 304, which is
described in detail below, may display the permission and
one or more justifications for the permission entered when
the client was registered in the data model. If the user
accepts the permission requested for the client, an authori-
zation code may be returned from the authorization server to
the user, which passes the authorization code to the client,
and the client exchanges the authorization code and a client
secret for an access token. The client may then make API
calls to the device service 84 including the access token to
retrieve and/or input data into the data model. For example,
the client may request to see the current temperature and/or
the target temperature using an API call and the access token
which provides thermostat read permissions. As a result, the
current temperature and/or the target temperature may be
returned by the device service 84 and displayed on the client
site/app 308. As should be appreciated, any data for which
the client is granted permissions may be accessed in the data
model 307 and used as desired on the client site/app 308.
The user may revoke access at any time, which will inhibit
the client from making any further requests for the user’s
smart devices’ (e.g., thermostats 10A, detectors 10B, and/or
devices 10C) data.

FIG. 10 illustrates the resource access permission page
304 of FIG. 9, in accordance with an embodiment. As
discussed above, this page 304 asks the user to grant access
to the client. In particular, the resource access permission
page 304 displays the permissions and justifications for the
permissions when the client was registered in the data

US 9,491,571 B2

33

model. The justification explains what the client will do with
the requested data and how it will benefit the user. Justifi-
cations should include the client name, the action(s) the
client can take, and the triggering event. For example, a
sample template to write justifications include the following:

“Allows [client name] to [take action] [because/when . .
I

In some embodiments, the justifications may have a
minimum word length (any suitable number, such as 5, 10,
15, 20, etc.), and contain less than or equal to a maximum
number of characters (any suitable number, such as 140,
150, 160, etc.). The user may see the justification in the
resource access permission page 304 and in a permissions
view within a smart device (e.g., thermostats 10A, detectors
10B, and/or devices 10C) site/app.

For example, in the illustrated embodiment, the resource
access permission page 304 indicates that Company A would
like to see data about the detector 10B related to smoke,
carbon monoxide, and battery info, and by doing so will
allow certain lights to turn red during an emergency (310).
Additionally, the page 304 indicates that Company A would
like to see when the user’s home is set to away, which allows
certain lights to turn off when the house is set to away (312).
The page 304 also notifies the user that the integration may
be disconnected at any time to terminate the client from
using the data.

FIG. 11 illustrates a block diagram of a system 314 for
authorizing clients to interact with a user’s smart device
(e.g., thermostats 10A, detectors 10B, and/or devices 10C)
data and/or operation via the web (e.g., server to server
resource requests), in accordance with an embodiment. FIG.
12 illustrates a sequence diagram 320 for authorizing clients
to use a user’s smart device data using the system 314 of
FIG. 11 via the web. As illustrated, the sequence diagram
320 depicts twelve events occurring in a sequential order.
For clarity, both FIGS. 11 and 12 will be described together.

The system 314 may include a smart device user 316, a
third party client 318, an authorization server 191, and the
device service 84 and/or API 90. It should be noted that, in
some embodiments, the device service 84 and/or the API 90
may receive the requests for resources from the client 318
and validate the access token provided by the client 318. It
should also be noted that, in some embodiments, the autho-
rization server 191 may provide functionality including
querying client information and a list of scopes that the user
granted to the client. As described in detail below, the scopes
may group together one or more permissions for a specific
functionality (e.g., viewing thermostat data, setting HVAC,
etc.). The authorization server 191 may also authenticate the
user 316 and fetch the user 1D, validate the user’s consent to
grant the client’s requested scopes, handle redirects, and
receive requests for the authorization code and the access
token. In some embodiments, the authorization server 191
may handle the requests via HTTP REST GET calls with
query parameter format.

Additionally, the authorization server 191 may include
one or more servers that provide varying functionalities. For
example, an authorization server that is not exposed to the
public may provide functionality for managing the authori-
zation codes, access tokens, client secret, scopes, and per-
missions, whereas a publicly exposed authorization server
may provide functionality for higher level functions of the
authorization code and access token granting process, such
as querying client information and list of scopes requested
for a client, authenticate user and fetch user ID, validate

20

35

40

45

50

55

34

user’s consent to grant client’s requested scopes, handle
redirects, and receive requests to provide access tokens for
authorization codes.

The user 316, which may be a customer/owner of
resources requested, may be using a web browser in the
illustrated embodiment. Event 1 322 of the sequence dia-
gram 320 includes the user 316 sending a request to the
client 318 webpage/app that incorporates data from the data
model. In response, event 2 324 shows a page being returned
to the user with a webpage containing a link to the autho-
rization page. The link to the authorization page may include
the following information: response type (“code”), client ID
(ID is provided to the client 318 when registered), state (a
value passed from the client 318 to authorization server 191
and may be used to protect against cross-site request forgery
attacks). Event 3 326 may include the user 316 clicking the
authorization link, thereby sending a GET request to the
authorization server 191. The authorization server 191
responds with the resource access permission page 304 and
the interstitial login page 306 if the user 316 is not already
logged in, as depicted in event 4 328.

Then, as indicated by event 5 330, the user 316 submits
a username, password, and resource permissions to the
authorization server 191. If the login is successful, the
authorization server 191 responds with a redirect to redirect
uniform resource identifier (URI) to the user 316, as indi-
cated by event 6 332. The redirect URI may contain the
following parameters: code (an authorization code used to
obtain an access token), a state (the same value passed to the
authorization server 191 earlier, which the client 318 should
validate has not changed upon receipt). The authorization
code may be a short string of alphanumeric characters with
different length requirements based on whether the autho-
rization is web-based (e.g., 14, 16, 18 characters) or PIN (6,
8, 10 characters). Also, the authorization code may be
subject to expiring if not used within a certain period of time
based on whether the authorization is web-based (e.g., 5, 10,
15 minutes) or PIN (e.g., 24, 48, 72 hours). Further, the
authorization server 191 may create an authorization entry in
the authorization tree for the user and the client that is
granted permission in the assigned scopes. In some embodi-
ments, once the permission is granted, data synchronization
between the API 90 and the data service 84 may begin.

In event 7 334, the user’s web browser redirects to the
client 318 with the authorization code. Upon receiving the
request from the user 316 containing the authorization code,
the client 318 may send a POST request to the authorization
server 191 containing the following parameters in event 8
336: grant type (“authorization code”), code (the authoriza-
tion code returned by the authorization server 191), client ID
(the ID issued when the client was registered), and a client
secret (a secret issued to the client 318 when registered).

As indicated by event 9 338, the authorization server 191
responds with an access token. The response may be an
object in the JavaScript Object Notation (JSON) data for-
mat: \{“access_token”:“some-random-string”, “expires_at”:
“time-expires ISO8601 format™}. In some embodiments, the
access token may not expire for an extended period of time
(e.g., 10, 15, 20 years). Also, the access tokens may be long
unique strings.

Then, as indicated by event 10 340, the client 318 requests
the needed resource from the device service 84 using the API
90. The API 90 request may include the following parameter
added: access token (the access token returned in the call to
the authorization server 191). That is, in some embodiments,
the API client or API client device may send one or more
requests including the access token to retrieve, access, view,

US 9,491,571 B2

35

subscribe, or modify data elements of a data model repre-
sentative of one or more smart environments. The access
token may be associated with at least the API client or API
client device and one or more scopes granted to the API
client or API client device. As previously discussed, the one
or more scopes may provide one or more access rights to one
or more of the data elements of the data model defined by a
hierarchical position of the data elements in the data model
represented by a respective path to the data elements. It
should be noted that the sending of the request including the
access token may be implemented as computer instructions
stored one or more tangible non-transitory computer-read-
able medias and executed by the API client or the API client
device.

Sending the one or more requests with the access token
enables downstream services (e.g., device service 84) to the
API client 318 or API client device to use the access token
to identify the one or more scopes granted to the API client
or API client device. The device service 84 may process the
request in accordance with the granted scopes to the asso-
ciated access token and API client 318 or API client device.
The device service 84 responds with the requested resource
in event 11 342 and the client 318 includes the resource into
a page included in a response to the user 316, as indicated
by event 12 344. It should be appreciated that the client 318
may continue to make requests from the device service 84 to
access or modify data in the data model based on the
permissions that were granted for as long as the access token
is valid. In some embodiments, the device service 84
responds with a data object including data objects from the
data model (e.g., a metadata data object, a devices data
object, a structures data object) based on the request and
scopes associated with the access token. Further, in some
embodiments the client 318 may perform a function in
addition to displaying the returned data in a page, such as
controlling a setting on the API client device based on the
data, executing a control action on the API client device
based on the data, and the like.

FIG. 13 illustrates a block diagram of a system 350 for
authorizing clients to use a user’s smart device (e.g., ther-
mostats 10A, detectors 10B, and/or devices 10C) data via a
PIN when the devices do not have a web UI, in accordance
with an embodiment. FIG. 14 illustrates a sequence diagram
360 for authorizing clients to use a user’s smart device data
using the system 350 of FIG. 13 via the PIN. For clarity, both
FIGS. 13 and 14 will be described at the same time.

The system 350 may include a smart device client appli-
cation 352, the smart device user 316, the authorization
server 191, and the device service 84 and/or API 90. It
should be noted that, in some embodiments, the device
service 84 and/or the API 90 may receive the requests for
resources from the client application 352 and validate the
access token provided by the client application 352. Addi-
tionally, the authorization server 191 may include one or
more servers that provide varying functionalities. For
example, an authorization server that is not exposed to the
public may provide functionality for managing the authori-
zation codes, access tokens, client secret, scopes, and per-
missions, whereas a publicly exposed authorization server
may provide functionality for higher level functions of the
authorization code and access token granting process, such
as querying client information and list of scopes requested
for a client, authenticate user and fetch user ID, validate
user’s consent to grant client’s requested scopes, handle
redirects, and receive requests to provide access tokens for
authorizations codes.

10

15

20

25

30

35

40

45

50

55

60

65

36

The sequence of events may begin with the user 316
installing the client application 352 that requires access to
resources in the data model, as indicated by event 1 362 in
the sequence diagram 360. In event 2 364, the client appli-
cation 352 instructs the user to use a link to the authorization
server 191 including the client’s name. The user 316 may
use a web browser to enter the link and request the page to
the authorization server 191 including the client’s name
(event 3 366). The authorization server 191 responds with
the resource access permission page 304 and the interstitial
login page 306 if the user 316 is not already logged in, as
depicted in event 4 368. The user 316 then submits approval
or denial of the resource access permissions for the client
and/or enters a username and password if login is required
to the authorization server 191 (event 5 370). In event 6 372,
the authorization server 191 responds with a result page that
contains a user readable authorization code (personal iden-
tification number (PIN)).

The user may copy the PIN from the web browser and
manually enter the PIN into the client application 352 (event
7 374). After the user enters the PIN, the client application
352 submits the PIN and a client secret (provided when the
client was registered) to the authorization server 191, as
depicted in event 8 376. Upon receipt of the PIN, the
authorization server 191 responds to the client application
352 with an access token (event 9 378). The client applica-
tion 352 can now make resource requests from the data
model via the device service 84 providing the access token
as a request parameter to the API 90 and/or the device
service 84 (event 10 380). The device service 84 and/or the
API 90 may analyze the access token and return the
requested resources from the data model based on the
permissions granted to the client application 352 (event 11
382).

In some embodiments, the client 318 or the client appli-
cation 352 may have their access revoked by the user at any
time. For example, the user may access a “settings” screen
and revoke the permissions granted to the client. The autho-
rization server 191 may generate and send an access token
revocation message that deletes the access token assigned to
the client 318 or the client application 352. The deletion may
be detected and, if the client 318 or the client application 352
that had their access deleted was the last authorized client,
then data synchronization between the API 90 and the data
service 84 may be stopped. Further, any sessions that were
authenticated with the deleted access token may be discon-
nected.

In some embodiments, multi-user integration (MUI) may
enable the client 318 or client application 352 to open a
single connection (HTTPS) and read data from multiple
users. Each connection may be responsible for the portion of
the users using a particular host. Using the single connection
may improve efficiency between server-to-server integra-
tions by reducing the overall number of connections. In one
example, REST streaming may be used by clients making a
call to a multiuser endpoint with a list of access tokens. In
some embodiments, the response may include all data for
each access token, including all structures and all devices,
and metadata. The client may examine the response data to
map the access tokens to the corresponding users and/or
filter the data values for the information the client desires. To
enable the client to map the access tokens, a metadata
section may be included in each response that includes the
access token associated with the data and the user.

If the client desires to modify the list of access tokens, the
connection may be closed, the list updated, and the multi-
user call may be made by the client again to reestablish the

US 9,491,571 B2

37

connection. In some embodiments, when data for users
associated with additional access tokens is desired, the client
may close the connection and add the add the additional
access tokens to the list to send in another request to the
multiuser endpoint. As long as the list does not exceed a
threshold number of access tokens, the connection will be
established and data will be returned for all of the access
tokens in the list. That is, in some embodiments, the con-
nection may not be established if more than a threshold
number of access tokens are provided. It should be noted,
that single-client integrations (e.g., mobile apps) may typi-
cally open a new connection for each access token and may
not use MUI. To make a MUI call, the client 318 or client
application 352 may use a specific endpoint (e.g., https://
developer-api.nest.com/multiplex) to make a REST stream-
ing call, or the like, and include a list of access tokens in the
request. For example, the request URL may be entered as
follows:

https://developer-api.nest.com/

multiplex?auth=LIST_OF_ACCESS_TOKENS

The list_of_access_tokens URL parameter may be of type
list and be a comma-separated list with a configured maxi-
mum number of access tokens. The authorization server 191
may validate the list against the access tokens associated
with the client 318 or the client application 352. In some
embodiments, as mentioned above, the response may
include all data values in an all objects so the client 318 or
the client application 352 may filter the fields of interest and
map the access tokens to the corresponding users (e.g., by
identifying the access tokens provided in a metadata section
of'the response and mapping them to the users). Additionally
or alternatively, there may be more than one response and
each response may be particular for a single access token
that was sent in the list of access tokens with the request. The
metadata section including the access token provides a
mechanism to identify which access token with which the
data and/or user is associated.

In one embodiment of multi-user integration, a method
for authorizing access for an application programming inter-
face (API) client or API client device to data of one or more
data models of one or more smart devices may include
retrieving a number of access tokens from an authorization
server. The method may also include providing, via a single
connection, the plurality of access tokens in a request made
by the API client or the API client device to the API. The
plurality of access tokens are used to verify access rights of
the API client or the API client device to read data for a
plurality of users associated with the one or more data
models of the one or more smart devices. The method may
be implemented as computer instructions on a tangible,
non-transitory computer-readable media and executed by the
API client or API client device.

As mentioned above, there may be one or more scopes
that include specific permissions associated with certain
functionality that may be granted to application program-
ming interface (API) clients and/or client applications. A
scope may refer to a collection of permissions. Scopes are a
unit of permission defining the ability to access or modify
the user’s data. Scopes may be identified by a unique name
(e.g., 64 characters) and an ID number, as discussed below.
Scopes enable identifying elements in the data model by
permissions to which the client 318 has access. The elements
may be located in the data model based on unique paths that
the client 318 is granted access (e.g., read, write, read and
write) via the scope granted. That is, there may be a one to
one correspondence between a path in the data model and
the element to which the client 318 has access. Thus, a scope

10

15

20

25

30

35

40

45

50

55

60

65

38

may include providing various access rights to a bundle of
paths to elements in the data model.

The scopes that are assigned and granted to the client 318
or the client application 352 may be tied to the session
(access token) for the life of the session. In some embodi-
ments, the API 90 may validate that the access token is
signed by a client secret issued by the authorization server
191. After validation, the API 90 may allow access to the
resources in the data model according to the granted scopes
associated with the access token using the device service 84.
In some embodiments, rules may be set up that allow access
to the resources if certain conditions are met. The table
below shows one such rule.

Sample Rule

“users” : {
“$user” : {
“read”: “auth.for_user == $user”,

The above rule indicates that the authenticated user can
read the users/<user> element if the “for_user” field of the
access token is <user>. Using this technique, rights infor-
mation may be stored and used to limit third party access to
the elements for which the third party has granted permis-
sions. Moreover, updates (insertions, deletions, modifica-
tion) on the rights tree may be detected and any needed
changes may be made to synchronize various servers
included in the system. An authorization tree may contain an
object for each user who has granted any client 318 or client
application 352 access. Within the user object there may be
sub-objects for every client that has been granted access.
Each client object contains information on rights granted to
that client. The below table includes an example of an
authorization tree.

Authorization Tree

{
auth:
55156: /fuser ID
1234: //client ID
scopes: [“thermostat read”],
granted__at ...
etc...
5678: //client ID
{
scopes: [“thermostat read/write”, “smoke + CO read”],
granted__at ...
¥
¥
¥
¥

As displayed in the table, the user with ID 55156 granted
scopes to two clients, client ID “1234” and client ID “5678”.
The scope granted to client ID “1234” includes only the
thermostat read scope and the client ID “5678” includes both
the “thermostat read/write” scope and the “smoke+CO read”
scope. The various scopes and permissions bundled into
each scope are discussed in detail below.

The permissions are designed and organized into scopes
based on the types of data each client 318 might need. For

US 9,491,571 B2

39

example, for clients 318 that only check in and get status
updates, a developer may only select a “read” permission for
data elements, and, as a result, only choose a scope including
read permissions to the associated element paths. However,
if the client 318 is designed to set device values or status, the
developer may choose a “read/write” permission for those
elements and choose a scope including read/write permis-
sions to the associated element paths. The scopes including
the permissions that are selected for a particular client
should match the client’s features. As the client’s features
expand, the client 318 may need new permissions. In some
embodiments, a new client version may be created with a
scope that includes the newly required permissions and that
client version may be offered to the users 316. It should be
understood that if the client 318 is authorized the assigned
scope, then the client may receive all of the permissions
defined for that scope. Also, if multiple scopes are autho-
rized for a client 318, then the client may receive a superset
of all permissions combined contained in those scopes.
Below is a table of some general scopes and the permissions
that each scope includes, according to an embodiment.

Scopes and Permissions

Thermostat read

Grants read permission to most of the Thermostat and Structure
data values

Thermostat read/write

Grants read permission to all of the Thermostat data values
Grants write permission to these Thermostat data values:
fan_ timer_ active, all target_ temperature_ x fields and
hvac_mode

Grants read permission to most of the Structure data values
Smoke + CO read

Grants read permission to all the Smoke + CO Alarm data values
and most of the Structure data values

Away read

Grants read permission to most of the Structure data values
Away read/write

Grants read permission to most of the Structure data values
Grants read/write permission for away

ETA write

Grants read permission to most of the Structure data values
Grants write permission to eta

Postal code read

Grants read permission for postal_code

Scope:

Scope:

Scope:

Scope:

Scope:

Scope:

Scope:

10

20

25

30

35

40

40

-continued

Scopes and Permissions

Scope: Product data read/write
Grants read permissions for all of the Company data values
Grants read/write permissions to software version and all of
the resource use data values
To illustrate, if a developer is registering a client 318 that

listens to (e.g., reads) the ambient temperature, target tem-
perature and the away state of the home, then the developer
would choose the “thermostat read” scope, which provides
only read access to those data elements. Conversely, a client
318 that needs to actively modify target temperature, heat/
cool mode or fan timer should be assigned the “thermostat
read/write” scope, which would provide write access to
those data elements, and retain read access to the other
thermostat and structure data elements. Another client 318
might track smoke and CO state, so the “smoke+CO alarm
read” scope may be chosen to provide read permissions to
those data elements. Still another client 318 could focus
solely on the home, and take action when the user 316
arrives home, or after the user leaves the home. In such a
case, the “away read/write and ETA write” scope may be
chosen.

The below tables illustrate the various scopes for element
paths in the data model for smart devices, such as thermo-
stats 10A and detectors 10B, and a structure in more detail.
The names of the scopes are across the top row of the table,
the second row includes the scope ID, the third row includes
a version number of the scope, and the leftmost column
includes the field/data element paths. In some embodiments,
a permission field in the data model may store all the
permissions included for the selected scope(s). When the
user 316 approves the requested scope for the client 318, an
authorization session may be created and the string includ-
ing all permissions for the client 318 may be copied into a
row where authorization session information resides includ-
ing the access token. The approved scopes for the client may
be stored as part of a login string in the data model where the
access token is stored. The access token is reused each time
the client requests data from the data service 84. It should be
noted, that in some embodiments, every scope has at least
read permissions to an access_token and client_version
element included in a “Metadata” object of the data model.

Thermostat Read Scope

Thermostat ~ Thermostat
Name read read
Fields 1D 10 19
Version 1 2

/devices/thermostats/device__id/device__id READ READ
/devices/thermostats/device__id/local READ READ
/devices/thermostats/device__id/software_ version READ READ
/devices/thermostats/device__id/structure__id READ READ
/devices/thermostats/device__id/name READ READ
/devices/thermostats/device__id/name_ long READ READ
/devices/thermostats/device__id/last_ connection READ READ
/devices/thermostats/device__id/is__online READ READ
/devices/thermostats/device__id/can_ cool READ READ
/devices/thermostats/device__id/can__heat READ READ
/devices/thermostats/device__id/is__using__emergency__heat
/devices/thermostats/device__id/has_ fan READ READ
/devices/thermostats/device__id/fan_ timer_ active READ READ
/devices/thermostats/device__id/fan_ timer_ timeout READ READ
/devices/thermostats/device__id/has_ leaf READ READ
/devices/thermostats/device__id/temperature_ scale READ READ
/devices/thermostats/device__id/target_temperature_ f READ READ
/devices/thermostats/device__id/target_temperature_ ¢ READ READ
/devices/thermostats/device__id/target_ temperature__high READ READ

US 9,491,571 B2
41 42

-continued

Thermostat Read Scope

Thermostat ~ Thermostat

Name read read
/devices/thermostats/device__id/target_temperature__high ¢ READ READ
/devices/thermostats/device__id/target_temperature_ low_f READ READ
/devices/thermostats/device__id/target_temperature__ low_c READ READ
/devices/thermostats/device__id/away__temperature__high_ f READ READ
/devices/thermostats/device__id/away__temperature__high_ ¢ READ READ
/devices/thermostats/device__id/away__temperature_ low__f READ READ
/devices/thermostats/device__id/away__temperature__low_c READ READ
/devices/thermostats/device__id/hvac__mode READ READ
/devices/thermostats/device__id/ambient_ temperature_ f READ READ
/devices/thermostats/device__id/ambient_temperature_ ¢ READ READ
/devices/thermostats/device__id/humidity READ
/structures/structure__id/structure__id READ READ
/structures/structure__id/thermostats READ READ
/structures/structure__id/smoke_ co__alarms READ READ
/structures/structure__id/away READ READ
/structures/structure__id/name READ READ
/structures/structure__id/country__code READ READ
/structures/structure__id/postal__code
/structures/structure__id/peak_ period_ start time READ READ
/structures/structure__id/peak_ period__end_ time READ READ
/structures/structure__id/time_ zone READ READ

/structures/structure__id/eta
/structures/structure__id/data_ upload

As described above and shown in the Thermostat Read the element may have been added to the data model after
Scope table, the thermostat read scope grants read permis- version 1 was created. As depicted, version 2 of the ther-
sion to most of the thermostat and structure data values in 3y mostat read scope grants read permission to the humidity
the data model. Version 1 of the thermostat read scope does data path in addition to all of the other elements included in
not provide read access to the humidity data values because version 1.

Thermostat Read/Write Scope

Thermostat ~ Thermostat

Name read/write read/write
Fields 1D 11 20
Version 1 2
/devices/thermostats/device__id/device__id READ READ
/devices/thermostats/device__id/local READ READ
/devices/thermostats/device__id/software_ version READ READ
/devices/thermostats/device__id/structure__id READ READ
/devices/thermostats/device__id/name READ READ
/devices/thermostats/device__id/name_ long READ READ
/devices/thermostats/device__id/last_ connection READ READ
/devices/thermostats/device__id/is__online READ READ
/devices/thermostats/device__id/can__cool READ READ
/devices/thermostats/device__id/can__heat READ READ
/devices/thermostats/device__id/is_ using__emergency__heat READ READ
/devices/thermostats/device__id/has_ fan READ READ
/devices/thermostats/device__id/fan_ timer_ active READ READ
WRITE WRITE
/devices/thermostats/device__id/fan_ timer_ timeout READ READ
/devices/thermostats/device__id/has_ leaf READ READ
/devices/thermostats/device__id/temperature_ scale READ READ
/devices/thermostats/device__id/target_temperature_ f READ READ
WRITE WRITE
/devices/thermostats/device__id/target_temperature_ ¢ READ READ
WRITE WRITE
/devices/thermostats/device__id/target_temperature_high READ READ
WRITE WRITE
/devices/thermostats/device__id/target_ temperature__high ¢ READ READ
WRITE WRITE
/devices/thermostats/device__id/target_temperature_ low_ f READ READ
WRITE WRITE
/devices/thermostats/device__id/target_temperature_ low_ ¢ READ READ
WRITE WRITE
/devices/thermostats/device__id/away__temperature__high_ f READ READ
/devices/thermostats/device__id/away__temperature__high ¢ READ READ
/devices/thermostats/device__id/away__temperature_ low__f READ READ

/devices/thermostats/device__id/away__temperature__low_c READ READ

US 9,491,571 B2

43

-continued

44

Thermostat Read/Write Scope

Thermostat ~ Thermostat

Name read/write read/write
/devices/thermostats/device__id/hvac__mode READ READ
WRITE WRITE
/devices/thermostats/device__id/ambient_ temperature_ f READ READ
/devices/thermostats/device__id/ambient_ temperature_ ¢ READ READ
/devices/thermostats/device__id/humidity READ
/structures/structure__id/structure__id READ READ
/structures/structure__id/thermostats READ READ
/structures/structure__id/smoke_ co__alarms READ READ
/structures/structure__id/away READ READ
/structures/structure__id/name READ READ
/structures/structure__id/country__code READ READ

/structures/structure__id/postal__code

/structures/structure__id/peak_ period_ start time READ READ
/structures/structure__id/peak_ period_end_ time READ READ
/structures/structure__id/time_ zone READ READ

/structures/structure__id/eta
/structures/structure__id/data_ upload

As described above and shown in the Thermostat Read/
Write Scope table, the thermostat read/write scope grants
read permission to all of the thermostat data values, grants
write permission to fan_timer_active, all target_tempera-
ture_x fields and hvac_mode data elements, and grants read
permission to most of the structure data values. It should be
noted that, in some embodiments, certain authorization rules
may ensure that when data is written (e.g., modified) by a
third party, the modified data includes a field (e.g.,
“touched_by”) that is set equal to a reserved value indicating
that a third party made a change and/or a modified at
date/time that is set to date/time the data was modified. In
this way, third party activity with resources in the data model
may be logged and monitored.

25

30

35

The smoke+CO read scope grants read permission to all
the smoke+CO alarm data values and most of the structure
data values, as show in the table above. The smoke+CO read
scope version 2 includes the same permissions for all of the
data values included in version 1 but adds additional read
permission to the is_manual_test_active data element and
the last_manual_test_time data element. The name data
value may be displayed in user interface labels, while the
name_long may be used in long form text. Device_id may
be a string that uniquely represents this device. When a
device is connected to multiple clients, each developer may
see a different device_id for that device. In embodiments
where the same developer has installed multiple clients for
the device, the developer may see the same device_id. The

Smoke + CO Read Scope

Smoke + Smoke +
Name CO read CO read
Fields D 12 21
Version 1 2
/devices/smoke_ co__alarms/device__id/device_ id READ READ
/devices/smoke_ co__alarms/device__id/locale__ READ READ
/devices/smoke_ co__alarms/device__id/software_ version READ READ
/devices/smoke_ co__alarms/device__id structure_id READ READ
/devices/smoke_ co__alarms/device__id/name READ READ
/devices/smoke_ co__alarms/device__id/name_ long READ READ
/devices/smoke_ co__alarms/device__id/last_connection READ READ
/devices/smoke_ co__alarms/device__id/is_ online READ READ
/devices/smoke_ co__alarms/device__id/battery_ health READ READ
/devices/smoke_ co__alarms/device__id/co__alarm_ state READ READ
/devices/smoke_ co__alarms/device__id/smoke_ alarm__ state READ READ
/devices/smoke_ co__alarms/device__id/ui_color_ state READ READ
/devices/smoke_ co__alarms/device_ id/is_ manual_ test_ active READ
/devices/smoke_ co__alarms/device__id/last__manual_test_time READ
/structures/structure__id/structure__id READ READ
/structures/structure__id/thermostats READ READ
/structures/structure__id/smoke_ co__alarms READ READ
/structures/structure__id/away READ READ
/structures/structure__id/name READ READ
/structures/structure__id/country__code READ READ
/structures/structure__id/postal__code
/structures/structure__id/peak_ period_ start time
/structures/structure__id/peak_ period__end_ time
/structures/structure__id/time_ zone READ READ

/structures/structure__id/eta
/structures/structure__id/data_ upload

US 9,491,571 B2

45

locale data value may include the language and country code
assigned to the device. Software_version may include a
string that represents the firmware currently installed on the
device. Structure_id may include a string that uniquely
represents this structure (the structure that the device is
paired with). Last_connection may include the timestamp of
the last successful connection to the data service 84. Is_on-
line may include the online status that is determined by using
the last_connection time and an expected reconnection win-
dow that is device specific. Battery_health may include a
string that states whether the battery is OK or whether it
needs to be replaced.

Co_alarm_state may include values that increase in sever-
ity. For example, when the CO levels are rising, the
co_alarm_state may show “warning” and when the user
should exit the home, the co_alarm_state may show “emer-
gency.” Smoke_alarm_state may include values that
increase in severity. For example, when the smoke levels are
rising, the smoke_alarm_state may show “warning” and
when the user should exit the home, the smoke_alarm_state
may show “emergency.” The is_manual_test_active data
value is normally “false” but may be “true” when a smoke
or CO test is started. Last_manual_test_time may include
the timestamp of the last successful manual smoke or CO
test. The ui_color_state data value may be derived from
is_online, battery_health, co_alarm_state, and
smoke_alarm_state. The ui_color_state may mirror the color
that is displayed on an app and/or the device.

Away Read Scope

Away
Name read

Fields D 14

Version 1
/structures/structure__id/structure__id READ
/structures/structure__id/thermostats READ
/structures/structure__id/smoke__co_ alarms READ
/structures/structure__id/away READ
/structures/structure__id/name READ
/structures/structure__id/country__code READ
/structures/structure__id/postal__code
/structures/structure__id/peak_ period_ start time
/structures/structure__id/peak_ period__end_ time
/structures/structure__id/time_ zone READ

/structures/structure__id/eta
/structures/structure__id/data_ upload

As described above and shown in the Away Read Scope
table, the away read scope grants read permission to most of
the structure data values. For example, version 1 of the away
read scope grants read permission to /structures/structu-
re_id/structure_id, /structures/structure_id/thermostats,
/structures/structure_id/smoke_co_alarms, /structures/struc-
ture_id/away, /structures/structure_id/name, /structures/
structure_id/country_code, and /structures/structure_id/tim-
e_zone. Version 1 of the away read scope does not provide
read or write permission to the following data elements:
/structures/structure_id/postal_code, /structures/structu-
re_id/peak_period_start_time, /structures/structure_id/peak-
_period_end_time, /structures/structure_id/eta, or /struc-
tures/structure_id/data_upload. It should be noted that the
away field may indicate whether the structure is occupied
and may include three states: home (someone is in the house,
either because the smart device determines that someone is
in the house based on motion sensor data or the user has
explicitly set the structure to home via an application, the
client, or ETA), away (the user has explicitly set the struc-

10

15

20

25

30

35

40

45

50

55

60

65

46

ture to away), auto-away (the smart device has determined
that no one is in the structure).

Away Read/Write Scope

Away
Name read/write

Fields D 15

Version 1
/structures/structure__id/structure__id READ
/structures/structure__id/thermostats READ
/structures/structure__id/smoke_ co__alarms READ
/structures/structure__id/away READ

WRITE

/structures/structure__id/name READ
/structures/structure__id/country__code READ
/structures/structure__id/postal__code
/structures/structure__id/peak_ period_ start time
/structures/structure__id/peak_ period_end_ time
/structures/structure__id/time_ zone READ

/structures/structure__id/eta
/structures/structure__id/data_ upload

As described above and shown in the Away Read/Write
Scope table, the away read/write scope grants read permis-
sion to most of the structure data values (e.g., the same data
values that read permissions are granted in the away read
scope) and grants read/write permission for the away data
value.

ETA Write Scope

Name ETA write

Fields D 17

Version 1
/structures/structure__id/structure__id READ
/structures/structure__id/thermostats READ
/structures/structure__id/smoke_ co__alarms READ
/structures/structure__id/away
/structures/structure__id/name READ
/structures/structure__id/country__code READ
/structures/structure__id/postal__code
/structures/structure__id/peak_ period_ start time
/structures/structure__id/peak_ period_end_ time
/structures/structure__id/time__zone READ
/structures/structure__id/eta WRITE

/structures/structure__id/data_ upload

As described above and shown in the ETA Write Scope
table, the ETA write scope grants read permission to most of
the structure data values and grants write permission to the
eta data value. For example, version 1 of the ETA write
scope grants read permission to /structures/structure_id/
structure_id, /structures/structure_id/thermostats, /struc-
tures/structure_id/smoke_co_alarms, /structures/structu-
re_id/name, /structures/structure_id/country_code, and
/structures/structure_id/time_zone. Version 1 of the away
read scope does not provide read or write permission to the
following data elements: /structures/structure_id/away,
/structures/structure_id/postal_code, /structures/structu-
re_id/peak_period_start_time, /structures/structure_id/peak-
_period_end_time, /structures/structure_id/eta, or /struc-
tures/structure_id/data_upload. It should be noted that ETA
is an object, set on a structure and only write access is
allowed. The ETA field should be used to provide informa-
tion on when the smart thermostat 46 should prepare the
temperature of a house for people arriving.

US 9,491,571 B2

Postal Code Read Scope
Postal code
Name read
Fields D 22
Version 1
/structures/structure__id/postal__code READ

As described above and shown in the Postal Code Read
Scope table, the postal code read scope grants read permis-
sion to the postal code data value.

10

48

limits. Provisioning limits define how many clients a devel-
oper may have associated with it, and how many unique
users a client may have. Each client may have its own user
limit. User limits may be defined as soft and hard. Soft limits
may be exposed to the developer and hard limits may be
enforced programmatically. In some embodiments, a client
active flag may (e.g., Boolean) may be set that indicates if
the client is active. If the client active flag is false, no new
sessions may be authorized and no access tokens can be
validated. Also, a developer active flag (e.g., Boolean) may
indicate if the developer is active. If the developer active flag

Product Data Read/Write Scope

Product data

Name read/write

Fields 1D 23

Version 1
/devices/$company/$product__type/product__id/identification/device_id READ
/devices/$company/$product__type/product__id/identification/serial__number READ
/devices/$company/$product_type/product__id/location/structure__id READ
/devices/$company/$product_ type/product_id/software/version READ/WRITE
/devices/$company/$product__type/product__id/resource_use/electricity/value READ/WRITE
/devices/$company/$product_type/product__id/resource_use/electricity/measurement_reset_time ~ READ/WRITE
/devices/$company/$product_type/product__id/resource_use/electricity/measurement_time READ/WRITE
/devices/$company/$product_ type/product_id/resource_use/gas/value READ/WRITE
/devices/$company/$product_type/product__id/resource_use/gas/measurement__reset_time READ/WRITE
/devices/$company/$product_type/product__id/resource_use/gas/measurement__time READ/WRITE
/devices/$company/$product__type/product__id/resource_use/water/value READ/WRITE
/devices/$company/$product_ type/product__id/resource_use/water/measurement_reset_time READ/WRITE
/devices/$company/$product_type/product__id/resource_ use/water/measurement_time READ/WRITE
Jstructures/structure__id/devices/$company/$product__type READ

As described above and shown in the Product Data
Read/Write Scope table, the product data read/write scope
grants read permission to some of the company and struc-
tures data values and grants read/write permission to most of
the company data values. For example, version 1 of the
product data read/write scope grants read permission to
/devices/company/product_type/product_id/identification/
device_id, /devices/$company/$product_type/product_id/
identification/serial_number, /devices/company/product-
_type/product_id/location/structure_id, and /structures/
structure_id/devices/$company/$product_type. Further, the
product data read/write scope provides read/write permis-
sions to /devices/$company/$product_type/product_id/soft-
ware/version, /devices/$company/$product_type/produc-
t_id/resource_use/electricity/value, /devices/$company/
$product_type/product_id/resource_use/electricity/
measurement_reset_time, /devices/$company/
$product_type/product_id/resource_use/electricity/
measurement_time, /devices/$company/$product_type/
product_id/resource_use/gas/value, /devices/$company/
$product_type/product_id/resource_use/gas/
measurement_reset_time /devices/$company/
$product_type/product_id/resource_use/gas/
measurement_time, /devices/$company/$product_type/
product_id/resource_use/water/value, and /devices/
$company/$product_type/product_id/resource_use/water/
measurement_reset_time.

To assign scopes to clients 318 and/or client applications
352, a developer may first need to register the client 318
and/client application 352 in the data model. Developers
may need a developer account to be eligible to create clients.
Developer accounts may be created by users and the users
may only be allowed one developer account. When initially
created, the developer account may have low provisioning

35

40

45

50

55

60

65

is false, no new clients may be created, but existing clients
may continue to work, including initiating new sessions.

The authorization server 191 may collect various statistics
during operation. For example, the authorization server 191
may collect statistics related to authorizations, created
access tokens requests, successful created access tokens
requests, failed created access tokens requests, access token
validation requests, successful access token validation
requests, failed access token validation requests, access
tokens by user requests, deleted access tokens requests,
successful deleted access tokens requests, failed deleted
access tokens requests, created client secrets requests,
retrieved client secret requests, successful retrieved client
secret requests, failed retrieved client secret requests,
deleted client secret requests, successful deleted client secret
requests, failed deleted client secret requests, and/or
reserved client sessions.

When creating a client, the developer may select the
scopes that the client may need based on their intended use
of'the data and functionality. It should be noted that the term
client may refer to a developer created integration point
which defines the set of scopes an end user will be asked to
grant the developer. It should also be noted that the term
vendor may refer to an organization that produces third party
devices (e.g., an electronic device produced by a manufac-
turer that does not host the data model) in a service or data
streams. The data model may include two tables to store
vendor data (vendors table) and associations with developers
(vendor developer association table). The vendors table may
contain the following fields at a minimum: unique ID (a
UUID), data path name, and created at timestamp. The
UUID is assigned when the vendor record is created. The
UUID value may not be changed after creation. The data
path name may include a unique string, with no spaces, that

US 9,491,571 B2

49

may be used to identify the vendor’s section of the data
model. The data path name is not intended to be exposed to
end users. The value of the data path name may not be
changed after it is created. The created at timestamp may
include the timestamp of when the vendor was created.

The vendor developer association table may map the
vendors to the developers that created the vendors in the data
model. The vendor developer association table may include
at least three columns: vendor ID, developer ID, and created
at timestamp. The vendor ID may include the ID of the
vendor, which may be a foreign key to the vendors table. The
developer ID may include the ID of the developer, which
may be a foreign key to the developers table. The created at
timestamp may include the timestamp of when the vendor
developer association was created. In some embodiments,
there may be a one to one relationship between a developer
and a vendor. That is, there may be a programmatic restric-
tion that only allows one developer to have one vendor.

APIs may be used to manage the vendors and the vendor
developer associations. For example, functionality provided
by the APIs may include creating a vendor, associating a
vendor with a developer (associating a vendor with a devel-
oper may add the developer’s user to the vendor user group),
and disassociating a vendor from a developer (disassociating
a vendor from a developer may inhibit new clients being
created with the vendor data scopes but may not remove
vendor data scopes and permissions from existing clients
and authorization sessions).

In some embodiments, an assignable permission may be
used by the scopes. An assignable permission may include
an attribute placeholder in certain element data paths that
will be replaced with the vendor data path names when
clients 318 are created by the developer. For example, a
general definition of an assignable permission may include
/$vendor/* and /structures/*/$vendor/clients/*. The assign-
able permission after being assigned to a client for a vendor
named “Company A” may include /companya/* and /struc-
tures/*/companya/clients/*. If a scope is assignable, a
replacement may be run on all placeholders when the scope
is added to the client 318. In some embodiments, scopes
with assignable attributes may be restricted to developers
who are in the vendor user group.

The assignable permissions and associated vendors may
enable a developer to have a vendor associated with it and
the string to access the data element. The assignable per-
mission allows a vendor to provide its specific data into the
data model and to read that data as desired using their vendor
specific data path. As such, the data model may include a
section with vendor’s device id and data specific to the client
to be entered into the model. The assignable permission
offers selective visibility into the data model based on
vendor. Each device added gets a new device id and per-
missions levels to allow access to certain data. Each vendor
may only be allowed to see data specific to each respective
vendor. To enable a client to enter and read data related to
their devices into the data model, a vendor record may be
created in the vendors table and a record may be created that
associates the vendor to the developer in the vendor devel-
oper association table. The vendor can then register specific
devices (the vendor has a device of a device type to associate
with a structure, so a record is created for that device in a
user’s structure in the data model) and use device services 84
to access the data model including the vendor specific data
(using data path name with the vendor’s name inserted via
the assignable permissions). In some embodiments, a first
vendor specific information in the data model may be

10

15

20

25

30

35

40

45

50

55

60

65

50

accessed by one or more other vendors if the first vendor
authorizes the one or more other vendors.

In some embodiments, a client 318 may be locked with
the scopes that are provided by the developer when creating
the client 318. If new elements are added to the data model
and included in different versions of certain scopes, a new
client may be created and assigned the scopes including the
new elements. In some embodiments, updatable client
scopes may be used to version the client. If it is desirable to
change the scope information for a client, a different version
of the client including the desired scopes may be selected.
For example, version 1 of the client may be assigned scope
with ID “10” and version 2 of the client may be assigned
scopes with IDs “10” and “20”. A message may appear in an
end user app that indicates a developer has updated their
client and would like to have access to the following
permissions. If the user 316 approves, then the permissions
for version 2 are copied into the permissions list for the
authorization session and included in the string including the
access token without having to go through a back and forth
process between the device service 84 and/or API 90 and the
client 318. The process may include one click by the user to
change an existing session for a client 318 to modify the
allowed scopes.

In some embodiments, various database tables may be
used to manage vendors, developers, clients, access tokens,
and the like. The tables may be designed in a relational
manner. That is, some of the tables may share elements that
are the same to match the elements and pull all of the
information related to those particular elements. For
example, a client table may include a client ID and a user
table may include a user ID. An access token table may
include an access token ID data element and the client ID
and the user ID data elements. In doing so, the access token
table shows which client ID’s and user ID’s are associated
with which access token 1D’s. Similarly, an authorization
code table may include an authorization code ID data
element and both the user ID and the client ID. In doing so,
the authorization code table shows which client ID’s and
user ID’s are associated with which authorization code ID’s.
In addition, a scopes table may be used to maintain a scope
ID and the permissions included in the scopes. When the
user approves a scope for a client, the scope ID that is
approved and the access token 1D that correlates to the client
may be stored in an access token and scopes table, and so
forth.

In some embodiments, the authorization server 191 may
include one or more servers that provide different function-
ality. For example, one server may not be exposed to the
public and include low level functions for managing autho-
rization codes, access tokens, client secrets, scopes and
permissions, while a second server may be exposed to the
public and include functions for higher level logic of the
authorization code and access token granting process (query
client information and list of scopes assigned, authenticate
user and fetch user ID, validate user’s consent to grant
client’s requested scopes, handle redirects, receive request
for authorization code and access token in a GET REST web
service call with query parameter format).

The internally-facing server (e.g., the server that is not
publicly exposed) may include multiple API URLs that
provide various functionalities. For example, the function-
alities may include creating new authorization codes, creat-
ing new access tokens, validating access tokens, deleting
access tokens, creating new client secrets, retrieving client
1D, deleting client secrets, and the like. The requests and
responses may be in the form of JSON.

US 9,491,571 B2

51

In some embodiments, an API URL to retrieve an autho-
rization code may be used. A request to the API URL may
include the user ID, client ID, PIN request, permissions,
and/or associated scope IDs. The response may return a
status, the authorization code, expires at date/time, and/or
the scope 1Ds.

In some embodiments, an API URL to retrieve an access
token may be used. A request to the API URL may include
the client ID, client secret, and/or authorization code. The
response may return a status, the access token, and/or
expires at date/time.

In some embodiments, an API URL to validate an access
token may be used. A request to the API URL may include
the access token, which may be a long unique string. In some
embodiments, the access token may include a leading letter,
“c”, adot “.”, and a long random string where the characters
are all URL compatible (e.g.,

10

15

c.hpNS6bLYNOqYzhAyAIR200dzR 6asdfswer ASDFAFS32423

The response may return a status, the user ID, the client ID,
the user token, permissions, and the scope IDs if the access
token is valid.

In some embodiments, an API URL to delete an access
token may be used. If the deletion is successful, a response
may include the access token, expires at date/time, created
at date/time, 1D, and client ID. If the deletion fails, the
response may include a status indicating the same.

In some embodiments, an API URL to create a client
secret and/or replace an existing client secret for a client ID
may be used. A response may include the client ID and the
client secret that is created.

In some embodiments, an API URL to get the client secret
may be used. A response may include the client secret that
is requested.

In some embodiments, an API URL to get a client ID and
a client secret may be used. A response may include the
client ID and the client secret that is requested.

In some embodiments, an API URL to delete a client
secret may be used. If a deletion request is successful, the
response may include a status indicating that the deletion
was successful. If the deletion request failed, then the
response may include a status indicating that the deletion
failed.

The publicly exposed server used by the authorization
server 191 may also provide various functionality, such as
validating an access token, getting an authorization code,
revoking access to a user’s data for a client, removing
authorizations for all user’s clients, getting all clients for a
user, getting a specific client or a user with sessions, getting
all clients, checking if a client exists, getting a client ID,
updating a client, deleting a client, creating a client, setting
the active state on a client, setting the users limit on a client,
getting the status of a client’s users limit, getting developer
information, updating a developer, creating a new developer
account, setting the active state on a developer, setting the
clients limit on a developer, setting the support flags on a
developer, updating a justification for a scope, getting all
clients for a developer, getting client for a specific developer,
getting all client categories, getting all scopes, getting all
restrictions on a scope, adding a restriction to a scope,
removing a restriction from a scope, obtaining an access
token using an authorization code, populating target struc-
ture with a fake device (thermostat), and/or deleting a
session. The functionalities may be included in various API
URLs, as generally described below.

In some embodiments, an API URL that validates an
access token may be used. A request to the APl URL may
include the access token. If the access token is not valid,

20

25

30

35

40

45

50

55

60

65

52

only a valid field may be returned indicating that the access
token is not valid. If the access token is valid, then the valid
field, user ID, client ID, company name, client name, user
token, permissions, session 1D, and/or scope IDs may be
returned.

In some embodiments, an API URL to get an authoriza-
tion code may be used. A request may include a client ID. If
successful, the response may include a status and the autho-
rization code, expires at date/time, and scope IDs.

In some embodiments, an API URL to revoke access to
user’s data for a client may be used. A request to the API
URL may include an access token associated with a client
and user. If revocation is successful, the response may
include a status and a message indicating that the session has
been deleted. If revocation is unsuccessful, an error response
may be returned and include a reason for the error, such as
Sthe session was not found or was unable to be deleted.

In some embodiments, an API URL to remove authori-
zations for all user’s clients may be used. A request to the
API URL may include an access token. If removal is
successful, the response may include a status and a message
indicating that the session has been deleted. If removal is
unsuccessful, an error response may be returned and include
a message indicating that the session was unable to be
deleted.

In some embodiments, an API URL to get all clients for
a user (including sessions) may be used. A request to the API
URL may include an access token associated with the clients
and the user. A response may include an ID, name, company
name, description, redirect URI, scopes (ID, justification,
name, version), targeted number users, intended usage,
active, active, users limit, visibility IDs, category IDs,
sessions, modified at date/time, created at date/time, and so
forth.

In some embodiments, an API URL to get a specific client
for a user with sessions may be used. A request may include
an access token associated with the client and the user. A
response may include information related to the client, such
as an ID, name, company name, description, redirect URI,
scopes (ID, justification, name, version), targeted number
users, intended usage, active, active, users limit, visibility
1Ds, category 1Ds, sessions, modified at date/time, created at
date/time, and so forth.

In some embodiments, an API URL to get all clients may
be used. A response may include client information, such as
1D, name, company name, description, redirect URI, support
URL, scopes (ID, justification, name, version), targeted
number users, intended usage, active, active, users limit,
visibility IDs, category IDs, sessions, modified at date/time,
created at date/time, and so forth.

In some embodiments, an API URL to check if a client
exists may be used. A request may include an access token
and parameters including a name (e.g., URL encoded name
to check). A response may include a status, name, in use
field, and so forth.

In some embodiments, an API URL to update a client may
be used. A request may include an access token and fields
related to the client to update, such as name, description,
redirect URI, support URL, targeted number users, and/or
intended usage. It should be noted that all fields may be
optional and only the fields included in the request may be
updated. The response may include a status and all fields

US 9,491,571 B2

53

related to the client, such as ID, name, company name,
description, redirect URI, support URL, scopes (ID, justifi-
cation, name, version), targeted number users, intended
usage, active, users limit, visibility IDs, category 1Ds, devel-
oper IDs, modified at date/time, created at date/time, and so
forth.

In some embodiments, an API URL to delete a client may
be used. A request may include an access token associated
with the client to delete. A response may include a status
indicative of whether the deletion request was successful. In
some embodiments, a client may be deleted if it has fewer
than a threshold number of users (e.g., 25, 30, 35) to which
it is associated. For example, in some embodiments, the
owner may delete clients that have less than 25 users.

In some embodiments, an API URL to create a client may
be used. A request may include an access token and fields
including developer ID, name, description, redirect URI,
support URL, targeted number users, intended usage, scopes
(ID, justification), and/or category IDs. In some embodi-
ments, the name may be unique. A response may include a
status and fields including ID, name, company name,
description, redirect URI, support URL, scopes (ID, justifi-
cation, name, version), targeted number users, intended
usage, active, visibility IDs, category 1Ds, developer 1D,
secret, modified at time/date, and/or created at time/date. An
error response may be returned in several instances, includ-
ing when there is no developer account, the provisioning
limit is exceeded, the user does not own the developer
account, the developer is not active, there is a duplicate
client name, the requestor is unauthorized, and/or the
requestor is not a staff user.

In some embodiments, an API URL to set active state on
a client may be used. A request may include an access token
and an active state. A response may include a status and the
active state.

In some embodiments, an API URL to set the users limit
on a client may be used. A request may include an access
token and a soft and a hard number of users limit. A response
may include a status and the soft and hard limits.

In some embodiments, an API URL to get the status of a
client’s user limit may be used. A request may include an
access token. A response may include a status, user limit,
user count, and/or status OK (e.g., set to “true” if the users
limit is not exceeded and set to “false” if over users limit).

In some embodiments, an API URL to get developer
information may be used. A request may include an access
token. A response may include a status and developer
information, such as ID, user ID associated with the devel-
oper, active state, client limit, address information, name,
phone, company name, company URL, industry, company
size, support (commercial and paid), modified at time/date,
and/or created at time/date.

In some embodiments, an API URL to update a developer
may be used. A request may include an access token and
developer information to update, such as phone, company
name, address information, company URL, industry, and/or
company size. It should be noted that, in some embodiments,
all fields in the body of the request may be optional and only
the submitted fields may be updated. A response may include
a status and the developer’s information, such as ID, user 1D,
active, client limit, address information, name, phone, com-

10

15

20

25

30

35

40

45

50

55

60

65

54

pany name, company URL, industry, company size, support
(commercial and paid), modified at time/date, and/or created
at time/date.

In some embodiments, an API URL to create a developer
account may be used. A request may include an access token
and developer information, such as user ID, name, phone,
company name, address information (e.g., first street infor-
mation, second street information, city, state, postal code,
country), company URL, industry, and/or company size. A
response may include a status and the developer’s informa-
tion, such as ID, user ID, active, client limit, address
information (e.g., first street information, second street
information, city, state, postal code, country), name, phone,
company name, company URL, industry, company size,
support (commercial and paid), modified at time/date, and/or
created at time/date.

In some embodiments, an API URL to set the active state
on a developer may be used. A request may include an access
token and active state of a developer. A response may
include a status and the active state of the developer.

In some embodiments, an API URL to update a scope’s
justification may be used. A request may include an access
token, scope ID, and updated justification. The response may
include a status, scope 1D, and updated justification.

In some embodiments, an API URL to get all clients for
a developer may be used. A request may include an access
token. A response may include client information, such as
client ID, name, company name, description, redirect URI,
support URL, scopes (ID, justification, name, version),
targeted number users, intended usage, active, users limit,
visibility IDs, category IDs, secret, modified at date/time,
and/or created at date/time.

In some embodiments, an API URL to get all client for a
specific developer may be used. A request may include an
access token. A response may include a status and client
information, such as client ID, name, company name,
description, redirect URI, support URL, scopes (ID, justifi-
cation, name, version), targeted number users, intended
usage, active, users limit, visibility IDs, category 1Ds, devel-
oper ID, secret, modified at date/time, and/or created at
date/time.

In some embodiments, an APl URL to get all client
categories may be used. A response may include a status,
client category ID, and name for the client category.

In some embodiments, an API URL to get all scopes may
be used. A response may include a status, scope 1D, scope
name, and version of the scopes.

In some embodiments, an API URL to get all restrictions
on a scope may be used. Restrictions may limit a scope to
particular data elements, clients, users, and so forth. A
response returned by this API URL may include a status and
names of user groups restricting the scope.

In some embodiments, an API URL to add a restriction to
a scope may be used. A request may include the restriction
to be added to the scope and scope ID. A response may
include a status and a message field indicating that the scope
restriction has been added.

In some embodiments, an API URL to delete a restriction
to a scope may be used. A request may include the restriction
to be deleted and scope ID. A response may include a status
and a message field indicating that the scope restriction has
been deleted.

US 9,491,571 B2

55

56

Server to Server Call from Client to Authorization Server to

Obtain an Access Token from an Authorization Code API URL

POST

Joauth2/access__token?code=STRING&client_id=STRING&client_secret=STRING

&grant_type=authorization_ code
Request:
* url parameters:

o code : the authorization_ code provided in the call to /oauth2/authorize.
o client_id : id of the client (application) requesting access to a user’s data.
o client_secret : secret key provided by Nest to client. This is also

sometimes called a “application key”.
o grant_type : may be authorization code
Response:
* status: 200
* content type :
* body :

application/json

“access__token”:“STRING”,

“expires__in":LONG // number of seconds until token expires

¥
Error Response:
* Missing parameter:
o status: 400
o contenttype: application/json
o body: {“etror”:“missing_paramenter”, *
required parameters: PARM_NAME”}
* Authorization code not found:
o status: 400
o contenttype: application/json
o body: {“etror”:
found”}
* Authorization code expired:
o status: 400
o contenttype: application/json
o body: {“etror”:
expired”}
* Client secret not found:
o status: 400
o contenttype: application/json
o body: {“etror”:
found”}
* Client is not active:
o status: 403
o contenttype: application/json
o body: {“etror”:
active”}
* redirect_uri parameter present:
o status: 400
o contenttype: application/json

. 2 e,

nput__error”,

.6

error__description”:

2 e

oauth?__error”,

2.6,

error__description”:

2 e

oauth?__error”,

2.6,

error__description”:

2 e

oauth?__error”,

.5

error__description”:

» <

client__not__active”,

.6

error__description”:

LE

o body: {“error”:
allowed”}

.66

error__description”:

‘missing

authorization code not

authorization code

client secret not

client is not

redirect__uri not

The server to server call from a client to the authorization
server 191 to obtain an access token from an authorization
code API URL displayed above includes the contents of a
sample JSON request and response. As displayed, the
request may include an URL parameters including the
authorization code provided in the call to /oauth2/authorize,
the client ID requesting access to a user’s data, the client
secret key provided by the authorization server 191 to the
client, and the grant type. The response may include a status,
content type, and a body including fields related to the
access token, and the expires in number of seconds until the
token expires. An error may occur in several scenarios
including when a parameter is missing, an authorization
code is not found, an authorization code expired, a client
secret not found, a client is not active and a redirect URI
parameter is present. If any of the above errors occurs, an
error response may include a status including a different
status ID for the error, content type, and a body including a
message indicating which error occurred.

45

50

55

60

65

In some embodiments, an API URL to populate a target
structure with a fake device (e.g., thermostat, smoke detec-
tor) to test a client’s access and/or usage of the data model
may be used. A response may include a status and an empty
message body for the sub-elements of the fake device.

In some embodiments, an API URL to delete a session
(invalidate the access token) may be used. A request to
delete the session, which invalidates the access token, may
include the access token to be invalidated. A response may
include a status.

iii. Data Model

As discussed above, clients 182 communicate with the
structures 10D and devices (e.g. 10A-10C) via a shared data
model (e.g., a shared JSON document) stored and/or acces-
sible by the device service 84. For example, application
programming interface (API) clients or API client devices
may send one or more requests to the API 90 or device
service 84 to retrieve, access, view, subscribe, or modify
data in the data model representative of one or more smart
environments. Sending the requests may be implemented by
the API client or API client device as computer instructions
stored on one or more tangible, non-transitory computer-

US 9,491,571 B2

57

readable media and executed by a processor. Data in the data
model may be organized hierarchically. At the top level of
the hierarchy are metadata, devices, and structures. Specific
device types are modeled under the devices object, such as
thermostats and/or hazard detectors (e.g., smoke and CO
alarms). In some embodiments, the metadata data object, the
devices data object, and the structures data object may be

58

peers relative to one another (e.g., at the same relative level
to one another) in the hierarchy. In addition, the data model
may be a single unified instance that is scalable for addi-
tional devices (e.g., thermostats, hazard detectors, and/or
party devices), companies, and/or structures. For example,
below is an example of a hierarchically structured data
model, in accordance with an embodiment.

Data Model with Metadata, Devices, and Structures

{

“metadata”: {

“access__token™: “c.FmDPkzyzaQe...” ,

“client_ version”: 1

b
“devices™: {
“thermostats™: {

“peyiINoOIldT2YIIVtYaGQ™: {
“device__id™: “peyiINoOIdT2YIIVtYaGQ” ,
“locale”: “en-US” ,
“software_ version”: “4.0” |
“structure__id”: “VqFabWH21nwVyd4RWglgNb292wa7hG_ dUwo2i2SG7j3-

BOLYOBA4sw” ,

“name”: “Hallway (upstairs)” ,

“name__long™: “Hallway Thermostat (upstairs)” ,
“last__connection™: “2015-10-31T23:59:59.0002” ,
“is__online™: true ,

“can__cool”: true ,

“can__heat”: true ,

“is_using emergency_ heat”: true ,
“has__fan™: true ,

“fan_ timer__active™: true ,

“fan_ timer__timeout”: “2015-10-31T23:59:59.000Z” ,
“has__leaf”: true ,

“temperature_ scale”: “C” ,
“target__temperature_ f’: 72 ,
“target__temperature_ c”: 21.5 ,
“target_temperature__high_ £: 72 ,
“target__temperature__high ¢”: 21.5 ,
“target_temperature_ low_ : 64 |
“target__temperature__low_c”: 17.5 ,
“away__temperature__high £ 72 ,
“away_ temperature__high_ ¢”: 21.5 ,
“away_ temperature__low_ £’ 64 ,
“away__temperature_ low_¢”: 17.5 ,
“hvac_mode™: “heat” ,

“ambient_ temperature_ : 72 ,
“ambient_temperature_ ¢ 21.5 ,
“humidity”: 40

}

“smoke__co__alarms™: {
“RIMTKxsQTCxzVesySOHPxKoF40yCifis™: {
“device__id”: “RTMTKxsQTCxzVcsySOHPxKoF40yCifrs™ ,
“locale”: “en-US” ,
“software__version™: “1.01” ,
“structure__id”: “VqFabWH21nwVyd4RWglgNb292wa7hG_ dUwo2i2SG7j3-

BOLYOBA4sw” ,

“name”: “Hallway (upstairs)” ,

“name__long™: “Hallway Protect (upstairs)” ,
“last__connection™: “2015-10-31T23:59:59.0002” ,
“is__online™: true ,

“battery__health”: “ok™ ,

“co_alarm__state™: “ok™ ,

“smoke__alarm__state”: “ok” ,

“is_manual_test_ active™: true ,
“last__manual__test_ time™: “2015-10-31T23:59:59.0002” ,

<,

¥
b

“$company”: {

. <,

ui__color_ state”: “gray”

“$product__type”: {
“CPMEMSnC48TISAHjQIp-aHI72JLYHK _ul_ ¢54UFb8CmPXNj4ixLbg”: {

“identification”: {

“device__id”: “CPMEMSnC48JISAH]QIp-

US 9,491,571 B2

59

-continued

60

Data Model with Metadata, Devices, and Structures

KHI72LLYHK ul_ ¢54UFb8CmPXNj4ixLbg” ,
“serial__number”: “1L090B50230”

I
“location”: {
“structure__id” : “VqFabWH21nwVyd4RWglgNb292wa7hG_ dUwo2i2SG7j3-
BOLYOBA4sw”
“software”: {
“version”: “1.0”
“resource_use”: {
“electricity”: {
“value™: 42.789 ,
“measurement__reset_ time™: “2015-01-01T01:01:01.000Z” ,
“measurement_ time”: “2015-01-01T01:02:35.000Z2”
“gas”
“value”: 0.345234545 ,
“measurement__reset_ time™: “2015-01-01T01:01:01.000Z” ,
“measurement_ time”: “2015-01-01T01:02:35.000Z2”
“water’: {
“value™: 10000.3 ,
“measurement__reset_ time™: “2015-01-01T01:01:01.000Z” ,
“measurement_ time”: “2015-01-01T01:02:35.000Z2”
¥
¥
¥
¥
¥
b
“structures™: {

“VqFabWH21nwVyd4RWglgNb292wa7hG_dUwo2i2SG7j3-BOLYOBA4sw”: {
“structure__id”: “VqFabWH2 1nwVyd4RWgIlgNb292wa7hG_ dUwo2i2SG7}3-

BOLYOBA4sw” ,

“thermostats™: [“peyiJNoOIldT2YIIVtYaGQ», ...],

“smoke__co__alarms™: [“RTMTKxsQTCxzVesySOHPxKoF40OyCifrs”, ... |,

“devices™: {

“$company”: {

“$product__type”: [“CPMEMSnC48JISAHjQIp-
aHI72LLYHK _ul_ c54UFb8CmPXNj4ixLbg™, ...]

¥
2
“away”: “home” ,
“name”: “Home” ,
“country_ code™: “US” ,
“postal__code™: “94304” |
“peak period_start_time™: “2015-10-31T23:59:59.0002” ,
“peak_period__end_ time”: “2015-10-31T23:59:59.000Z” ,
“time__zone™: “America/Los__Angeles” ,
“eta”: {

“trip_id”: “myTripHome1024” ,

“estimated__arrival _window__begin”: “2015-10-31T22:42:59.000Z” ,

“estimated__arrival_window__end”: “2015-10-31T23:59:59.0002”

As illustrated, metadata may be added to the data model.
The metadata object includes additional information that is
provided when making a call to the API (e.g., via REST
and/or Firebase). The access_token element acts as an
authorization element that is used to provide proof that a
user has authorized the client 182 to make API calls on their
behalf. The access_token element is also used to identify
which user to which the data is associated with when
receiving responses from a MUI call, as described above.
The client_version is an indication of the last user-autho-
rized version of a client 182 and is associated with the
access_token.

Further, specific device types are modeled under the
“devices” object. For example, in the current example, a

55

60

65

thermostat 10A and detector 10B are modeled. It should be
noted that other devices types may be modeled, such as
cameras, security alarms, and the like. Additionally, a “com-
pany” object may be modeled under the “devices” object, as
explained in detail below. Further, a structure is modeled. A
structure represents a physical building. Structures 10D
contain devices (e.g. 10A-10C) as well as information for
the building as a whole. For example, in one embodiment,
an estimated time of arrival to the structure 10D and/or an
“away” mode indicating that no one is currently occupying
the structure may be maintained at the data model. Each of
the devices and/or structures has an associated unique iden-
tifier, which enables the API calls to be accurately routed to
the proper device object.

US 9,491,571 B2

61

In some embodiments, the data model may be hierarchi-
cally constructed in a manner where the structures are at a
higher level and devices are at a sub-level of a corresponding
structure that the devices are associated with. Users of the
system 180 may each have their own structure and/or device
objects in the data model, which may be identified by an
associated user identifier. Below is an example of a data
model structure, where structures and devices are associated
with a user.

Example Data Model 1

“auth”: {
“505: {
“myapp”: *
payload

antoken” //antoken is a customized token

)

“users™: {
“505”: { //505 is a unique user identifier
“structures™: { //structures object
“f3d0c560-03f2-11e1-982a4-12313812a376™: {
//structures unique identifier

“country__code”: “US”,

“name”: “home”,

“away”: false,

“location”: “Sunnyvale, CA”,

“postal__code”: “94087”,

“away_ setter”: 1

“devices™: { // device associated with the structure
“01AAO01AB431100RF”: { //device unique
identifier
“temperature__scale”: “F”,
“country__code”: “US”,
“current__temperature”: 21.5,
“name”: “Senior Zirconia”,
“fan__mode™: “auto”,
“device__locale”: “en_US”,
“target__temperature__type”: “heat”,
“can__cool”: false,
“postal__code”: “94087”,
“current__humidity”: 52,
“can__heat”: true,
“last__connection”: 1355181256000,
“has_ fan™: false,
“target__temperature”: 20,
“online”: false

}

As illustrated, in the above embodiment, structure
£3d0c560-0312-11e1-98a4-1231381aa376 is implemented as
a sub-level of the user 505, indicating that the structure is
associated with this user. Any number of structures may be

10

15

20

25

30

35

40

45

50

62

implemented and/or associated with a particular user. Fur-
ther, one structure may be associated with many users.
Further, the device 01AA01 AB431100RF is implemented as
a sub-level of structure object £3d0c560-03f2-11e1-98a4-
123138122376, indicating that this device is a device of that
structure. Any number of devices may be implemented
and/or associated with a particular structure.

In an alternative embodiment, a topology of associations
between devices and structures may be provided in the data
model, as illustrated in the following Example Data Model
2:

Example Data Model 2

“users™: {
“505”: {
“structures”: {

{
{
b
“devices™: {
“d1”: {
“d27: {
“topology”: {
“structures™: {
“s17: [“d17, “d2”],
“g27: [“d3”]

-

i,

;
properties™: {

P

,
wings”: {

-

‘.

,
oors™: {

-

In Example Data Model 2, two structures s1 and s2 are
associated with user 505. Further, devices d1 and d2 are
associated with the user 505. The topology section associ-
ates the devices d1 and d2 with the structure sl and
associates a third device d3 that is not associated with the
user 505 to the structure s2.

Honing in on the device objects, the devices (e.g., 10A-
10C) may share a common base set of information such as
a user-supplied name, software version and online status.
Additionally, the data model may include information spe-
cific to a particular device type. For example, smoke and/or
CO detectors 10B may build upon the common base set of
information, adding alarm states. Further, thermostats 10A
may add upon the common base set of information to add
data that may enable control of HVAC systems and data
regarding an observed climate of thermostat 10A. Below is
an example of thermostat 10A and detector 10B objects of
the data model.

Devices Data Model Objects

“devices™: {

“thermostats™: {
“peyiINoOIldT2YIIVtYaGQ™: {

“device__id”: “peyiINoOIldT2YIIVtYaGQ” ,
“locale”: “en-US” ,

“software_ version”: “4.0” ,

“structure__id”:

“VqFabWH21nwVyd4RWglgNb292wa7hG__dUwo2i2SG7j3-BOLYOBA4sw” ,

“name”: “Hallway (upstairs)” ,
“name__long”: “Hallway Thermostat (upstairs)” ,
“last__connection™: “2014-10-31T23:59:59.000Z2” ,

US 9,491,571 B2
63 64

-continued

Devices Data Model Objects

“is__online™: true ,
“can__cool”: true ,
“can__heat™: true ,
“is_ using emergency__heat”: true ,
“has_fan”: true ,
“fan_ timer__active’: true ,
“fan__timer__timeout”: “2014-10-31T23:59:59.000Z” ,
“has__leaf: true ,
“temperature_ scale”: “C”,
“target_temperature_ f7: 72 ,
“target_temperature_ c”: 21.5,
“target_temperature__high_ £’: 72,
“target_temperature__high ¢”: 21.5,
“target_temperature_ low_ : 64 |
“target_temperature_ low_c”: 17.5 ,
“away__temperature__high *: 72,
“away_temperature__high_¢”: 21.5 ,
“away__temperature__low_ ’: 64 ,
“away__temperature__low_ ¢ 17.5 ,
“hvac_mode”: “heat” ,
“ambient temperature_ f7: 72,
“ambient_temperature_ ¢ 21.5 ,
“humidity”: 40

¥

moke__co__alarms™: {
“RTMTKxsQTCxzVesySOHPxKoF40yCifrs™: {
“device_id”: “RTMTKxsQTCxzVesySOHPxKoF40yCifrs” ,
“locale”: “en-US” ,
“software__version”: “1.01” ,
“structure__id”:
VqFabWH21nwVyd4RWglgNb292wa7hG_ dUwo2i2SG7j3-BOLYOBA4sw” ,
“name”: “Hallway (upstairs)” ,
“name__long” : “Hallway Protect (upstairs)” ,
“last__connection™: “2014-10-31T23:59:59.000Z2” ,
“is__online™: true ,
“battery__health”: “ok” ,
“co__alarm__state™: “ok” ,
“smoke__alarm__state”: “ok” ,
“is__manual_test_ active™: true ,
“last__manual__test_time”: “2014-10-31T23:59:59.000Z” ,

., s

“ui__color__state”: “gray”

}

i,

}

“$company”: {
“$product__type”: {
“CPMEMSnC48ITISAHjQIp-aHI72LYHK _ul_ ¢54UFb8CmPXNj4ixLbg™: {
“identification”: {
“device__id”: “CPMEMSnCA48JISAHjQIp-
kHI72LLYHK ul_ c54UFb8CmPXNj4ixLbg”,
“serial _number”: “1L090B50230”
I
“location”: {
“structure__id”:
“VqFabWH21nwVyd4RWglgNb292wa7hG_ dUwo2i2SG7j3-BOLYOBA4sw”

»
“software”: {
“version”: “1.0”

“resource_use”: {
“electricity”: {
“value™: 42.789 ,
“measurement__reset_ time”: “2015-01-01T01:01:01.000Z” ,
“measurement_ time”: “2015-01-01T01:02:35.000Z”

>
<, 2,

gas™: {
“value”: 0.345234545 ,
“measurement__reset_time”: “2015-01-01T01:01:01.000Z” ,
“measurement__time”: “2015-01-01T01:02:35.000Z>

“water”: {
“value™: 10000.3 ,
“measurement__reset_time”: “2015-01-01T01:01:01.000Z” ,
“measurement_ time”: “2015-01-01T01:02:35.000Z”

}

¥
¥

US 9,491,571 B2

65

-continued

66

Devices Data Model Objects

As illustrated, a device identifier (device_id:String) may
be associated with the thermostat 10A and/or detector 10B.
The device_id element holds the unique identifier of the
particular device. Further, each device may include the
following elements: a country and language preference
(locale:String), a software version (software_version:
String), an associated structure (structure_id:String), a name
(name:String) (e.g., short name for use in user interface
labels), a long name (name_long:String) (e.g., for a more
descriptive name), a last connection timestamp (last_con-
nection: String), and a device connection status (is_online:
Boolean).

The thermostat may add additional elements. Some of the
elements may allow for the use of varied temperature scales
(e.g., Fahrenheit and/or Celsius). The thermostat-specific
elements may include: an indication that the HVAC system
has a cooling ability (can_cool:Boolean), an indication that
the HVAC system has a heating ability (can_heat:Boolean),
a heat pump system emergency heating status indicator
(is_using_emergency_heat:Boolean), an indication of an
ability to control the fan separately from heating or cooling
(has_fan:Boolean), an indication if the fan timer is engaged,
which may be used with a fan timer timeout to turn on the
fan for a user-specified preset duration (fan_timer_active:
Boolean), a timestamp showing when the fan timer reaches
0 (fan_timer_timeout:String), an indicator to display an
energy-saving temperature indication (has_leaf:Boolean), a
temperature scale to use (e.g., Celsius or Fahrenheit (tem-
perature_scale:String), a desired target Fahrenheit tempera-
ture (target_temperature_fiint), a desired target Celsius tem-
perature (target_temperature_c:float), a maximum target
temperature in Fahrenheit (target_temperature_high_fiint), a
maximum target temperature in Celsius (target_tempera-
ture_high_c:float), a minimum target temperature in Fahr-
enheit (target_temperature_low_fiint), a minimum target
temperature in Celsius (target_temperature_low_c:float), a
maximum away temperature in Fahrenheit (away_tempera-
ture_high_fiint), a maximum away temperature in Celsius
(away_temperature_high_c:float), a minimum away tem-
perature in Fahrenheit (away_temperature_low_fiint), a
minimum away temperature in Celsius (away_temperature-
_low_c:float), an HVAC mode indicating heating, cooling,
and/or heating-cooling modes (hvac_mode:String), an ambi-
ent temperature measured at the thermostat 10A in whole
degrees Fahrenheit (ambient_temperature_f:float), an ambi-
ent temperature measured at the thermostat 10A in half
degrees Celsius (away_temperature_low_c:float).

The detectors 10B may include additional elements as
well. These additional elements may include: an indication
of battery life/health and/or an estimate of time to end of life
of the detector 10B (battery_health:enum string), a carbon
monoxide detection alarm state (co_alarm_state:enum
string), a smoke detection alarm state (smoke_alarm_state:
enum string), an indication of whether or not the manual

10

15

20

25

30

35

40

45

50

60

65

smoke and carbon monoxide alarm test is active (is_manu-
al_test_active:Boolean), a timestamp indicating the time of
the last successful manual test (last_manual_test_time:
string), and/or an indicator of a color representative of
device status (e.g., gray for offline, green for OK, yellow for
warning, and/or red for emergency) (ui_color_state:enum
string). The indicator of the color representative of device
status may be derived from: is_online, battery_health,
co_alarm_state, and/or smoke_alarm_state.

The company ($company:string) may represent a variable
provided when a client is created and provided the “product
data read/write” scope. The company variable may identify
the company (e.g., client) as an entity that can share product
data with the API 90 and/or device service 84. As illustrated,
the company variable may include an element for a product
type variable ($product_type:string) that is provided when a
client is created with the product data read/write” scope. The
product_type variable may define the type of product,
device, or appliance manufactured by the company.

The product type variable may be an object or an array,
depending on the storage location. The product type variable
may include a product unique identifier. For each product
unique identifier, there may be several additional elements.
For example, each product unique identifier may include an
element for: identification, location, software, and resource
use (resource_use). The identification (identification) ele-
ment may contain product identifiers. For example, the
identification element may contain: a device identifier (devi-
ce_id:string), which is a unique device identifier for the
product; and a serial number (serial_number:string), which
is a serial number of the product or device. The location
element may include a unique identifier for the structure
(structure_id:string). The software element may include the
software version identifier for the product (version:string).
The resource use element may include elements for elec-
tricity, gas, and/or water. The electricity, gas, and/or water
elements may include resource use data values and mea-
surement timestamps. For example, the environment and gas
elements may include a number of joules (value:number)
consumed in a time period, a timestamp that identifies the
start of the measurement time period (measurement_reset-
_time:string), a timestamp that identifies the measurement
time (the time when the resource use data was measured)
(measurement_time:string). The water element may include
a number of liters consumed in the time period, a timestamp
that identifies the start of the measurement time period
(measurement_reset_time:string), a timestamp that identi-
fies the measurement time (the time when the resource use
data was measured) (measurement_time:string). It should be
noted that, the devices object may be scalable to include one
or more company objects and each of the one or more
company objects may be scalable to include one or more
product (e.g., device) type objects.

Additionally, as mentioned above, structures may be
represented as an object of the data model. Below is an
example of a shared structure object and its associated data
that may be read and/or written to.

US 9,491,571 B2

67

68

Structures Data Model Object

{

“structures™: {

“VqFabWH2 1nwVyd4RW glgNb292wa7hG_ dUwo2i2SG7j3-BOLYOBA4sw”: {
“structure__id”: “VqFabWH2 1nwVyd4RW glgNb292wa7hG_ dUwo2i2SG7)3-

BOLYOBA4sw” ,
“thermostats™: [“peyi]NoOIldT2YIIVtYaGQ”, ...],

away”: “home” ,
name”: “Home” ,
country__code”: “US” ,
postal__code™: “94304” ,
peak_period__start_time™: “2014-10-31T23:59:59.000Z2” ,
“peak_period__end_ time”: “2014-10-31T23:59:59.000Z” ,
“time__zone™: “America/Los__Angeles” ,
“eta”: {

“trip__id”: “myTripHome1024” ,

<,
<,
<.
‘.
<,
<,

smoke_ co__alarms™: [“RTMTKxsQTCxzVesySOHPxKoF40yCifrs”, ...],

“estimated__arrival _window__begin”: “2014-10-31T22:42:59.000Z” ,
“estimated__arrival_window__end”: “2014-10-31T23:59:59.0002”

The structures object may include: a unique identifier:
(structure_id:string), one or more lists of devices associated
with the structure (e.g., an array of thermostats 10A (ther-
mostats:array) and/or an array of detectors 10B (smoke_co-
_alarms:array) that contain the unique identifiers of the
thermostats 10A and/or detectors 10B, respectively). Fur-
ther, the structure may include one or more indications of
characteristics and/or statuses of the structure. For example,
the structure object may include: an indication of the struc-
ture state (e.g., “away” state when no occupants are in the
structure) (away:string), a name associated with the struc-
ture (name:string), a country code associated with the struc-
ture (country_code:string), a postal code associated with the
structure (postal_code:string), a start time for an energy
event (e.g. Rush Hour Rewards by Nest®) (peak_period-
_start_time:string), an end_time for an energy event (e.g.
Rush Hour Rewards by Nest®) (peak_period_end_time:
string), a time zone associated with the structure (time_zone:
string), estimated time of arrival to the structure (eta object
that includes: a unique identifier for the estimated time of
arrival instance (trip_id:string), a beginning time for an
estimated arrival window (estimated_arrival_window_be-
gin:string), and/or an ending time for an estimated arrival
window (estimated_arrival_window_end:string). In
instances where there is a particular estimated time of arrival
rather than a window of arrival time, the beginning and end
times may be set equal to the particular estimated time of
arrival.

In the API 90, the concept of “Home” or “Away” is a
powerful aspect that may affect the behaviors of certain
smart device (e.g. thermostat 10A, detector 10B, and/or
device 10C) features. For example, many energy savings
and/or convenience features may be implemented using the
“Home” or “Away” concept. For example, when integrated
with other devices in the structure via the API 90, clients 182
can further manage user comfort and safety. For example,
clients can: turn off the lights when the home goes into
Away, send a notification if the house is Away and the garage
door is open, play music when the house switches to Home,
etc.

The indication of structure state (e.g. “away” mode) may
include an indication for “home” when someone is occupy-
ing the structure, “away” when a user has explicitly set the

25

30

35

40

45

50

55

60

65

structure to away, and/or “auto-away” when it has algorith-
mically been determined that no one is in the structure.

Users have the ability to manually activate Home/Away
via smart device controls, web applications, etc., while the
API 90 offers an additional access point via the clients 182.
The API 90 provides the ability to directly set Home and
Away, as well as listen for changes to these states. Further,
avariety of signals within the structure may be used to detect
human presence in a Home, and can set a sub-state of Away,
called Auto-Away. If the device service 84 and/or the smart
devices detect no presence for an extended period of time,
they may automatically set the home to Auto-Away. Upon
detection of human presence, the state of the structure may
return to the Home state.

As mentioned above, depending on their access rights,
clients 182 can read and/or write to the sections of the data
model. Accordingly, subscribing to changes to the data
model enables clients 182 to react in real time to changes
made to the system 180. Thus, using the API 90, clients 182
may access smart device services 84 to control and/or
provide data to one or more smart devices. For example,
when a structure and/or thermostat is set to “away” mode,
this status may be provided through the API 90 to the clients
182, which may then turn off one or more devices (e.g.,
smart lighting systems, etc.).

In some embodiments, the device service 84 responds
with a data object including data objects from the data model
(e.g., a metadata data object, a devices data object, a
structures data object) based on the request and scopes
associated with the access token. Further, in some embodi-
ments the clients 182 may perform a function in addition to
displaying the returned data in a page, such as controlling a
setting on the API client device based on the data, executing
a control action on the API client device based on the data,
and the like.

iv. Third-Party Device Data Provisioning and Access

As previously discussed, vendors that do not have direct
access to the device services 84 may wish to provide data to
the device services 84 for many reasons. For example,
vendor data may be useful for reporting by the device
services 84 and/or may be used in conditional triggers to
control one or more smart devices (e.g., thermostat 10A,
detector 10B, and/or device 10C) and/or structures 10D that
are under the influence of the device service 84. Further, this

US 9,491,571 B2

69

data may be accessible by other vendors, who may base
control of these or other smart devices based in part upon the
provided vendor data.

Further, the device service 84 provider may desire to
expand a sensor network within the structure 10D and/or
improve device (e.g., 10A-10C) and/or structure 10D report-
ing and/or control algorithms. Thus, it may be beneficial to
take in such data from third-parties (e.g., those who do not
have direct access to the device services 84). Accordingly,
the API 90 may include support for data provision from
these third-parties.

Specifically, the APIs 90 may support the reception of
data streams of “events” and/or “time variant data.” In one
embodiment, the event data may be provided as a named
value with a name, timestamp and other data that may be
extensible. Event data may be provided upon occurrence of
a particular event. For example, event data representative of
motion detection may occur when one or more third-party
sensors detect motion in the structure 10D.

Time variant data provision may relate to providing an
account of data over varying time periods. For example, this
data may provide a historical account of particular data
values of a third-party sensor. Further details and examples
of time variant profiles are described in U.S. Ser. No.
62/061,593, filed Oct. 8, 2014, entitled “Fabric Network,”
which is incorporated by reference herein in its entirety for
all purposes. In some embodiments this may be supple-
mented with the current data values. For example, re-using
the motion detection example discussed above, the time
variant data provision may provide a historical account of
motion detected by the third party sensor (e.g., motion
detected at 5:00, no motion detected at 6:00, etc.).

FIG. 15 is a schematic diagram, illustrating a third-party
vendor and device provisioning system 500 that enables
consumption of third-party device data via the API 90, in
accordance with an embodiment. FIG. 16 is a flowchart,
illustrating a process 600 for provisioning third-party ven-
dors and third-party devices, such that third-party device
data may be consumed via the API 90. FIG. 17 is a relational
diagram, illustrating a relationship of entities stored in the
system 500 when provisioning third-parties/third-party
devices 502 in the system 500. For clarity, these FIGS. will
be discussed together.

To consume data from a third-party and/or third-party
device 502 (e.g., via data sent through a third-party cloud
504 to the API 90), the system 500 may be provided
awareness information regarding the third-party (e.g., the
“vendor”) and/or the third-party devices. This information
may be stored in the system 500, in a manner that enables
the system 500 to identify and/or classify third-party data
that is received. This awareness data (e.g., provisioning
data) may be provided, for example, from the third-party
and/or third-party device 904 and/or the API 90 provider
506. This provisioning data may be provided to the Services
191, which may include one or more provisioning modules
(e.g., portions of machine-readable instructions, imple-
mented on a processor) for provisioning a vendor (block
602) and/or for provisioning a device (block 604).

Vendor Provisioning

Vendors that wish to provide and/or retrieve data to and/or
from the system 500 may be provisioned for such data

10

15

20

25

30

35

40

45

50

55

60

65

70

provision and/or retrieval. By utilizing vendor provisioning,
administrators of the system 500 may control particular
vendors that may interact with the system 500. For example,
a vendor may provide a request for interactivity rights with
the system 500, which may be sent to the administrators of
the system 500. Once the administrators verify that the
vendor is legitimate and/or meets interactivity rights eligi-
bility, the administrator may enable the vendor to provide
vendor-specific information that may be used to facilitate
interactivity with the system 500.

Vendor provisioning (block 602) may begin by submit-
ting, via a provisioning process initiated by the third-party
and/or third-party device 502 (e.g., via the third-party cloud
504) and/or by the API provider 506. In the provisioning
process, the third-party and/or third-party device 502 and/or
by the API provider 506 may provide (e.g., via a web service
call) information to populate vendor-specific information
(e.g., the vendor entity 702 of FIG. 17, which will be
discussed in more detail below) to the services 191. The
services 191 may maintain this vendor-specific information,
which may be used to tie particular devices with the newly
provisioned vendor. Thus, if a request for device provision-
ing (block 604, which will be described in more detail
below) for “Device A” is provided by “Company B,”
portions of the vendor-specific device information for
“Company B” may be tied to device type-specific informa-
tion for “Device A.” For example, as illustrated in FIG. 17,
the Device Type Entity 704 has a “Produced By relation-
ship with the Vendor Entity 702.

Device Provisioning

To consume data from third-parties and/or third-party
devices 502. The system 500 may be provided particular
information regarding the devices 502. Specifically, a device
manifest (e.g., the device manifest section illustrated in the
Device Type Entity 704 of FIG. 17) is used to maintain
compatibility information regarding the third-party devices
502. Information for the manifest may be provided via the
third-party and/or third-party device 502, a third-party cloud
504, and/or the API provider 506 to the services 191. The
services 191 may consume this information and create a
device type definition for the device 502 being provisioned.

First, build-time profiles for expected third-party device
types are defined. These build-time profiles provide a
description of particular device capabilities and/or metadata
regarding data provided by these devices. For example,
profiles may provide data type information, data units, data
constraints, etc. These profiles may closely resemble Weave
profiles, which are described in more detail in U.S. patent
application Ser. No. 13/926,335, filed Jun. 25, 2013, entitled
“Efficient Communication for Devices of a Home Network™,
which is incorporated by reference in its entirety for all
purposes. Weave is an application-layer protocol for com-
municating data. The profiles are defined as protobuf mes-
sages using field metadata annotations to describe manifest
sections corresponding to a given profile and how the
fragment of the data model JSON corresponding to a profile
is validated.

Below is a code snippet example of the profile defining
protobuf definitions, in accordance with an embodiment.

Device definition

// Device message is a union of all supported profiles.
// Device manifest is an instance of this type.
message Device {

US 9,491,571 B2

71

-continued

72

-continued

// Required profiles.

optional IdentificationProfile identification = 1 [(fleld_metadata) = {
api_required: TRUE

manifest_required: true

s
optional LocationProfile location = 2 [(field_metadata) = {
api_required: TRUE

manifest_required: true

3
optional SoftwareProfile software = 3 [(field_metadata) = {
api_required: TRUE

manifest_required: true

s
/I Optional profiles.

optional ResourceUseProfile resource_use = 256 [(field_metadata) =

api_required: MANIFEST
s
)

Primary profiles definition
message IdentificationProfile {
// some metadata (not provided) may annotate fields generated
by public APT
optional string device_id = 1 [(field_metadata) = {
3
optional uint64 node_identifier = 2 [(field_metadata) = {
weave_tag_kind: CORE
weave_tag_number: 0x0001
api_writable: TRUE
s
optional string serial_number = 3 [(field_metadata) = {
weave_tag_kind: CORE
weave_tag_number: 0x0007
api_required: TRUE
3
optional uint32 vendor_id = 4 [(fleld_metadata) = {
weave_tag_kind: CORE
weave_tag_number: 0x0002
manifest_required: true
3
optional string vendor_description = 5 [(fleld_metadata) = {
weave_tag_kind: CORE
weave_tag_number: 0x0003
manifest_writable: true
s
optional uint32 product_id = 6 [(field_metadata) = {
weave_tag_kind: CORE
weave_tag_number: 0x0004
manifest_required: true
3
optional string product_description = 7 [(field_metadata) = {
weave_tag_kind: CORE
weave_tag_number: 0x0005
manifest_writable: true
s
optional string revision = 8 [(field_metadata) = {
weave_tag_kind: CORE
weave_tag_number: 0x0006
manifest_writable: true

1
}

message LocationProfile {
optional string structure_id = 1 [(field_metadata) = {
weave_tag_kind: CORE
weave_tag_number: 0X000A
api_required: TRUE
validation: {
orderly: {
prefix: “string”
suffix: “/[af09]{8}[af09]{4}[af09]{4}[af09]{4}[af09]{12}

10

15

20

25

30

35

40

45

50

55

60

65

message SoftwareProfile {
optional string version = 1 [(fleld_metadata) = {
weave_tag_kind: CORE
weave_tag_number: 0x000B
api_required: TRUE
M
optional int64 update_time = 2 [(field_metadata) = {
weave_tag_kind: CORE
weave_tag_number: 0x000C
api_writable: TRUE
M
optional string description = 3 [(fleld_metadata) = {
weave_tag_kind: CORE
weave_tag_number: 0x000D
api_writable: TRUE
M
}

Resource use profile definition
message ResourceUseProfile {
message ResourceUse {
enum MeasureType {
// removed for brevity
}
message Units {
message Unit {
enum BaseUnit {
// removed for brevity
}
optional BaseUnit base = 1 [(field_metadata) = {
weave_type: UINT_1
weave_tag_number: 0x16
M
// Exponent applied to the base unit.
// For example hertz would have an exponent value of —1.
optional int32 exponent = 2 [(field_metadata) = {
weave_type: SINT_1
weave_tag_number: 0x17
M
}
repeated Unit units = 1 [(fleld_metadata) = {
weave_tag_number: 0x15
M
// SI prefix indicated decadic multiple or fraction of the unit
// For example millimeters would have an exponent value of 3.
optional int32 prefix_exponent = 2 [(field_metadata) = {
weave_type: SINT_1
weave_tag_number: 0x17
M
optional string description = 3 [(fleld_metadata) = {
weave_tag_number: 0x09
M
}

// Measure type

required MeasureType measure_type = 1 [(fleld_metadata) = {
weave_type: UINT 2
weave_tag_number: 0x06

s

/I Measure units

optional Units units = 2 [(field_metadata) = {
weave_tag_number: 0x13

s

// Resource description

optional string description = 3 [(fleld_metadata) = {
weave_tag_number: 0x09

3

// Data source, this field is intentionally left as a free form

optional string source = 4;

// Measured value

optional double value = 5 [(field_metadata) = {
weave_tag_number: Ox1E

api_required: true

3

73

-continued

US 9,491,571 B2

74

-continued

// When was the last reset of the measured value, seconds

since UNIX Epoch

optional uint64 measurement_reset_time = 6 [(fleld_metadata) = {

weave_tag_number: O0x1F
api_required: true
M

// Measurement time, seconds since UNIX epoch

optional uint64 measurement_time = 7 [(field_metadata) = {

api_required: true
s
i

10

optional ResourceUse electricity = 1 [(field_metadata) = {

api_required: MANIFEST

optional ResourceUse gas = 2 [(fleld_metadata) = {
api_required: MANIFEST

s
optional ResourceUse water = 3 [(field_metadata) = {
api_required: MANIFEST

s

Metadata
// Field metadata

message FieldMetadata {
// Weave types
enum WeaveType {
// (portions removed for brevity)

// Weave tags
enum WeaveTagKind {
ANONYMOUS = 0 [(weave_tag_metadata) = {
tag control: 0x0
s
CONTEXT = 1 [(weave_tag_metadata) = {
tag control: Ox1
s
CORE = 2 [(weave_tag_metadata) = {
tag control: 0x2
tag control: 0x3
s
FULLY_QUALIFIED = 4 [(weave_tag metadata) = {
tag control: 0x6
tag control: 0x7
s
¥
enum ApiSemantics {
// Field is not writable
FALSE = 1;
// Field is writable if present in manifest
MANIFEST = 2;
// Field is writable
TRUE = 3;

15

20

30

35

40

45

// Weave type; defaults to a type derived from proto field type

// double => FLOAT_8

// float => FLOAT 4

// int32, sint32, sfixed32 => SINT_4
// int64, sint64, sfixed64 => SINT_8
// uint32, fixed32 => UINT_4

// uint64, fixed64 => UNIT_8

// bool => BOOLEAN

// string => STRING

// bytes => BYTES

// Enum type => may be accompanied by weave_type and/or

explicit validation

// Message type => STRUCTURE
optional WeaveType weave_type = 1;
// Weave tag kind

50

55

optional WeaveTagKind weave_tag_kind = 2 [default = CONTEXT J;

// Weave Profile Id, used to annotate top level device fields as profiles

// and with fully qualified tags

optional uint64 weave_profile_id = 3;
// Weave tag number

optional uint32 weave_tag_number = 4;

60

// Validation applied to the field both at manifest creation time and

// update validation time
optional Validation validation = 5;

65

// Allow updating field in the payload, api required fields are
api writable

optional ApiSemantics api_writable = 6;

// Require updating field in the payload

optional ApiSemantics api_required = 7;

// Allow setting field in the manifest

optional bool manifest_writable = 8 [default = true];

// Require setting field in the manifest

optional bool manifest_required = 9;

Validation
// Describes how a field is validated, the only supported validation
message Validation {
// Describes Orderly validation statement
// See http://orderlyjson.org/docs for Orderly details
message OrderlyValidation {
// Anything that goes before the field name in Orderly, aka defini-
tion
// prefix; includes type and range
optional string prefix = 1;
// Anything that goes after the field name in Orderly, aka definition
// suffix; includes enum values
optional string suffix = 2;

¥
optional OrderlyValidation orderly = 1;

}

Once the profiles are defined, these profiles may be
imported and used in subsequent device type manifests,
which may be used to describe and/or translate received
third-party device 502 data. In embodiments where a profile
is compatible with Weave (or other application-layer proto-
col), an indicator of this compatibility may be provided in
the profile (e.g., by providing the compatible Weave (or
other application-layer protocol) profile identifier in the
profile). Upon release of the profiles, new device type
manifests may be created using the released profiles. The
device type manifests are runtime artifacts represented by a
serialized protocol message and provide device type defini-
tions for the particular third-party device 502 being provi-
sioned.

Below is an example of a third-party device manifest. In
particular, the example third-party device manifest is for an
Acme brand washer with revision 201410161.0b that pro-
vides energy and water resource usage in the supplied units.
The device manifest enables the system 500 to understand
data that is provided to it via this type of third-party device
502.

identification: <
vendor_description: “Acme”,
product_ description: “WSHR1138”,
revision: “201410161.0b”,
>5
resource_ use: <
electricty: <
measure__type: ENERGY
units: <
units: <
base: KILOGRAM
>
units: <
base: METER
exponent: 2
>
units: <
base: SECOND
exponent: 2
>
>
description: “Energy consumption in joules’
source: “power sensor”

5

US 9,491,571 B2

75

-continued

water: <
measure__type: VOLUME
units: <
units: <
base: METER
exponent: 3
>
exponent: 3
>
description: “Water consumption in liters”
source: “Flowmeter”
>

These device type definitions may be provided to the
device service 84, the applications 182 and/or 510, and/or
the data warehouse 185, where they may be used to interpret
and/or translate data received from the third-party devices
502, as will be discussed in more detail below.

Device Pairing

Once the device type is defined, a device 502 of that type
may be paired (block 606). Pairing of third-party devices
502 is essentially registering the device 502 with the system
500, which may aid in the system 500’s understanding of
data provided by the device 502.

The pairing process includes two basic steps. In one step,
the pairing process collects information about the device
502, such as a location (e.g., structure) of the device, a serial
number (or other unique identifier) of the device 502, etc.
This information may be provided by a user attempting to
pair the device 502 (e.g., via a graphical user interface
prompt requesting the device-specific information). For
example, a pairing request (e.g., a REST message) may be
provided to the API 90 from the third-party and/or third-
party device 502 and/or the third-party cloud 504. This
pairing request may include the device-specific information.
The API 90 may transform payload data provided in the
pairing request into a format interpretable by the services
191 and may provide the transformed data to the services
191. For example, the API 90 may receive the request in an
ISO 8601 format and translate data from the request into an
alternative format expected by the services 191.

In a second step, the pairing process determines the device
type of the device 502 and ties the device type to the
device-specific payload data of the third-party device 502.
To do this, the services 191 may retrieve an associated
provisioned device type and form a relationship between the
device-specific payload data and the associated device type.
For example, as illustrated in FIG. 17, during the pairing
process, the Device Type entity 704 may be tied to the
Device entity 706 (e.g., a “Has Type” relationship). Further,
the Device entity 706 may be tied to a particular structure
(e.g., an “Is Part Of” relationship). Additionally, historical
device pairing information may be stored (e.g., by the
Device History entity 712).

Upon registration with the system 500, paired devices are
then provided for subsequent distribution by the publication
service 508 (e.g., via an update message), which may lead to
publication to the data warehouse 185 (e.g., via a second
update message).

Providing Device Data

Once the vendor is provisioned (block 602), the device is
provisioned (block 604), and the device is paired (block
606), the system 500 is able to receive and interpret third-
party and/or third party device 502 data. The third-party
and/or third party device 502 and/or the third-party cloud

10

15

20

25

30

35

40

45

50

55

60

65

76
504 may provide data via a data provision message (e.g., a
Firebase and/or REST message) to the API 90.

Upon receiving third-party data, the API 90 may translate
the payload into a format interpretable by the device service
84. Upon receiving the translated payload, the device service
84 may retrieve the device type definition for the particular
device 502. For example, when the device service 84 starts,
it may load all available device type definitions from the
services 191. If the device 502 is of a known device type
(e.g., has an associated device type definition loaded in the
device service 84), the associated device type definition may
be used to subsequently translate and/or describe incoming
data from the device 502 and/or cloud 504. Occasionally, the
device 502 may be of an unknown device type (e.g., has no
associated device type definition loaded in the device service
84). For example, a device type may be provisioned after the
device service loads all available device type definitions.
When the device type is unknown (e.g., has no associated
device type definition loaded in the device service 84), the
device service 84 may provide a request to the services 191
for a new device type definition associated with the device
502. Upon receiving this new device type definition from the
services 191, the new device type definition may be used to
translate and/or describe incoming data from the device 502
and/or cloud 504. This device type definition acquisition
may occur during pairing of the third-party device 502
and/or as data is received from the third-party device 502
and/or cloud 504

For example, the associated device type definition may be
used to describe incoming data from the third-party device
502 and/or third-party cloud 504. The device service 84 may
propagate third-party payload data to the applications 182
and/or 510 and/or the publication service 508 (e.g., via a
data update message), which may result in the payload data
being stored in the data warehouse 185 (e.g., via a second
update message). The device type definitions may be pro-
vided not only to the device service 84, but also the
applications 182 and/or 510, and/or the data warchouse 185,
which may enable the payload to be interpreted by each of
these entities. For example, accumulated third-party payload
data that is stored in the data warehouse 185 may be
interpreted using the device type definition, such that an
energy report 514 may be provided to the user 512. Further,
any other processing logic 516 may use the device type
definition to understand the third-party payload data.

Below is an example of a sample third-party device data
that conforms to the device manifest example that is pro-
vided above. Specifically, the third-party device data repre-
sents washer data that provides energy and water usage. As
illustrated below, the payload provides time-variant data
related to a particular instance (or instances of use) for the
washer with Ser. No. 12/345,6789.

“identification”: {
“serial__number”: “123456789”
I3

“resource_use”: {
“energy”: {
“value™: 50.2,
“measurement__reset_ time”: 946684800,
“measurement_ time”: 1414794859

b

US 9,491,571 B2

-continued
“water’: {
“value™: 123.7,

“measurement__reset_ time”: 946684800,
“measurement_ time”: 1414794859

Data Entities

Moving now to a more-detailed discussion of data entities
useful for third-party data submission, FIG. 17 is a relation-
ship diagram 700, illustrating the relationship between third-
party vendor and/or device entities stored in the system 500
to enable third-party data consumption and/or provision.
Specifically, the vendor entity 702 represents a third-party
entity that sends third-party device data. In some embodi-
ments, access scopes may be based upon a vendor identity.
For example, a vendor scope may correspond to an ability to
read and write data under a vendor path in the data model.
Multiple clients 184 may be associated with one vendor (e.g.
third-party 502). The clients 184 may be associated with a

10

15

20

78

Further, the device type entity 704 contains a serialized
device manifest field that describes device metadata and
payload for the particular device type represented by the 3P
device type entity 704.

The 3P (third-party) device entities 706 are created upon
a first pairing of the device 502 (block 606) with the API 90
and/or device service 84. The device entity 706 represents an
identifiable entity (e.g., a device) that produces data con-
forming to a given device type. For example, the device
entity 706 might represent a particular dishwasher that
conforms to the washer_v2 device type.

As discussed above, devices are associated with particular
structure entities 708. The device entity 706 is paired with
the structure entities 708, which is associated with a user
entity 710. Further, a device history entity 712 (e.g., a data
table) stores a history of pairings between the device entity
706 and the structure entity 708.

Pairing of the third-party device 502 may be triggered by
providing a POST request to the API 90 at the path /devices/
<vendor_path>/<device_type_path> with a post body con-
taining the third-party device payload. Below is an example
of such a post body.

POST request Body for Device Pairing

“identification”: {
“serial__number”: “abcdefgh”,

‘o

»
ocation”

|

“structure__id”:
“VqFabWH21nwVyd4RWglgNb292wa7hG_ dUwo2i2SG7j3BOLYOBA4sw™,

... // other profiles

vendor entity 702. Accordingly, exchanging an access token
granted to a client 184 associated to a vender entity 702 (e.g.,
either directly or via a developer) may return permissions
corresponding to that vendor entity 702. The vendor entity
702 may include a vendor path attribute, which may be
unique across all vendor entities 702.

The 3P (third-party) Device type entity 704 represents a
class of devices belonging to a single vendor that have the
same information payload. Device types are immutable.
Accordingly, once the device type metadata is obtained, it
can be cached indefinitely. Device types can be versioned.
For example, differing data pathways may be provided for
device types with different version. Thus, in one embodi-
ment, versioning may be handled, for example, by append-
ing a version to common prefix, for example washer_v1 may
relate to a first version of a dishwasher device type and
washer_v2 may relate to a second version the dishwasher
device type.

Using the vendor entity 702 and the 3P device type entity
704, third party devices may be provisioned (block 604).
The 3P device type entity 704 includes a vendor identity
attribute that identifies the vendor that the 3P device type
entity 704 belongs to.

The 3P device type entity 704 includes a path attribute
that may be used to access devices of a particular device
type. The path attribute may be unique across all device
types for a particular vendor entity 702. Accordingly, device
types may be retrieved using a combination of the vendor
702 path with the 3P device type 704 path.

40

45

50

55

60

65

As illustrated, the payload provided in the post body may
include device-identitying information, such as a serial
number (e.g., identification/serial_number) and/or a struc-
ture identifier (e.g., location/structure_id) of the structure
associated with the device. The device-identifying informa-
tion may be used to uniquely identify a device of a particular
type for a particular vendor, while the structure identifier
may indicate which structure the device should be paired to.
In some embodiments, these fields may be required in order
to successfully pair with the API 90 and/or device service
84.

In the device services 84, each of the paired third-party
devices 502 may be stored in a “Third-Party Device” portion
of the data model (e.g., a specially designated portion of the
data model for third-party devices 502). These devices 502
may be provisioned at runtime, thus enabling introduction of
new third-party device pairings without requiring new ser-
vice stack releases.

When pairing completes successfully, the services 191
may provide a newly-assigned internal identifier for this
third-party device 502. The device service 84 may then
insert this internal identifier into the original payload (e.g.,
the POST request body) and return the result. Below is an
example of the payload with added internal identifier.

US 9,491,571 B2

79

80

Returned Payload after Pairing

“identification”: {

“device__id”: “peyiINoOIldT2YIIVtYaGQ”,

“serial__number”: “abcdefgh”,

I

“location”: {

“structure__id”:

“VqFabWH21nwVyd4RWgIgNb292wa7hG_ dUwo2i2SG7j3BOLY0BA4sw”,

... // other profiles
¥

Accordingly, the system 500 may now use and/or store
device information from the third-party devices 502. Thus,
device data may then be provided to the device services
(block 608) from these devices 502. Further, upon proper
validation of a third-party and/or third-party device 502, a
third-party application 182 and/or an application 510 of the
API provider 506 may be used to provide this data to a user
512.

When devices 502 are no longer in use (or data is no
longer provided to the system 500), they may be unpaired
from the system 500. To do this, a DELETE request to the
API 90 at the path /devices/<vendor>/<device_type>/<de-
vice_id>. In some embodiments, the internal device identi-
fier is obfuscated during the pairing process. In such
embodiments, the path point <device_id> may refer to the
obfuscated device identifier. Based upon this DELETE
request, the API 90 may request the services 191 to delete
the identified device 502. When the services 191 complete
the unpairing successfully, the services 191 return a success
indication to the API 90, which returns a similar indication.

The discussion now turns to a more detailed look at how
the system 500 consumes and/or presents third-party data.
As mentioned above, access permissions to read and/or
write to the data model may be defined using a path leading
to devices and/or structures. To enable definition of permis-
sions for specific vendors, the path may include an inter-
mediate reference to the particular vendor. For example, the
devices attribute may include a sub-attribute named “ven-
dor” or “vendor_path” followed by the third-party vendor
devices. Accordingly, the path to the third-party vendor
devices may include a vendor field, allowing particular
permissions to be provided for a particular third-party ven-
dor.

The API 90 may receive a request to read and/or write
data to the data model of the device service 84 and may then
request authentication rights (e.g., from the services 191).
Upon verifying the authentication rights, the API 90 may
provide the vendor, device type, and/or device identifier path
elements to construct a corresponding device service 84 read
and/or write request that it provides to the device service 84.

The device service 84 may validate the received request.
Upon validation, the request may be processed, resulting in
the read and/or write to the data model.

v. Third-Party Insight Data Provision and Access

In some embodiments, a third-party vendor may desire to
provide additional data to the system 500. For example, the
vendor may wish to provide a stream of data relating to
particular logs and/or metrics. To do this, the third-party may
provide a stream descriptor, which describes the particular
data that will be provided to the system 500. Then, the

15

20

25

30

35

40

45

50

55

60

65

vendor may provide data in a format corresponding to the
stream descriptor, noting the association with the stream
descriptor.

Discussing first the stream descriptors, the stream descrip-
tors provide a description of any stream data that a third-
party wishes to post. Below is an example of stream descrip-
tor for amp and watt measurements that may be provided via
a subsequent data stream.

Metric Stream Descriptor

“metric__stream__descriptor”: {
“version”: 1 // version number
“description”: “energy measurements”, // a human readable

»
description of the stream

“fields™: [// a list of fields in a stream

“description”: “current”, // a human readable description of the
field
“relative”: true, // whether measurements are absolute or relative
to the preceding sample
“exponent™: 1, // scaling (in base 10) for the measurement
“logical _minimum”: 0, // expected minimum for any sample.
Need details on diff between this and physical
“logical _maximum™: 100, // expected maximum for any sample.
“physical__minimum”: 0,
“physical__maximum”: 1000,
“units”: { // an object describing the units for samples in this
field
“system”: “si”, // this or english
“description”: “Amps”, // human readable description
“unit__composition™: [
{“quantity”: “current”, “exponent’: 1
}
]
¥
b
{

“description”: “Watts”,
“relative”: true,

“exponent”: 1,

“logical _minum”: 0,
“logical _maximum™: 100,
“physical__minimum”: 0,
“physical__maximum”: 1000,

“units™: {
“system™: “si”,
“description”: “watts”,

“unit__composition”: [// a more complicated example
representing kg * m2/s 3

{“quantity”: “mass”,

“exponent”: 1

b

{“quantity”: “length”,

“exponent”: 2

b

US 9,491,571 B2

81

-continued

82

-continued

Metric Stream Descriptor

{“quantity”: “time”,
“exponent”: -3

}

Additionally, state information regarding a device may be
described and provided by a third-party vendor. Below is a
state-based stream descriptor.

“state_stream__ descriptor’: {
“version”: 1 // currently this should always be 1
“description”: “smoke detector states”, // a human readable
description of the stream
“fields™: [// a list of fields in a stream

“description”: “smoke”, // a human readable
description of the field
“states™: [
“name”: “all clear”,
“description”: “state when acceptable levels of
smoke are detected”
“value”™: 0
b
“name”: “heads up 17,
“description”: “first gentle alert on smoke”
“value™: 1
>
“name”: “heads up 2”,
“description”: “more urgent alert”
“value”: 2
b
“name”: “heads up 3”,
“description”: «”
“value”: 2
b
“description”: “co”, // a human readable
description of the field
“states™: [
“name”: “all clear”,
“description”: “state when acceptable levels of coare
detected”
“value™: 0
b
“name”: “heads up 17,
“description”: “first gentle alert on co”
“value™: 1
b
“name”: “heads up 2”,
“description”: “more urgent alert”
“value™: 2
b
“name”: “heads up 3”,
“description”: «”
“value™: 2

10

15

20

25

30

35

40

45

50

55

60

65

In creating the descriptors, the vendor may determine and
indicate whether the descriptor is for public or private use.
Public descriptors can be used by other developers, while
private descriptors may only be used by the creating vendor.
Accordingly, when the API 90 provider desires, it can create
public descriptors for third-party vendors to use, especially
when the API 90 provider has particular information it
would like to collect from third-parties (e.g., energy usage,
motion events, carbon-monoxide states, etc.).

Upon completion of the creation of the stream descriptors,
the developers may provide the descriptor to the API 90,
which may return a descriptor identifier. To post data, the
third-party vendor may provide the data-stream in accor-
dance with the format provided in the descriptor, along with
the descriptor identity provided from the API 90. Below is
an example of data posted via a described data stream.

“stream”: {
“descriptor”: {
“developer’: 1240985,
“id”: 1240958

“source”: {
“manufacturer”: “Nest”,
“type”: “D2A”,
“id”: 1240958098,
“qualifier”: “the thermostat”

}

“data”: [
[12098650986098, 5.60986, 1.23498],
[12098650986099, 5.60986, 1.23498],
[12098650986100, 5.60986, 1.23498],
[12098650986101, 5.60986, 1.23498],
[12098650986102, 5.60986, 1.23498],
[12098650986103, 5.60986, 1.23498],
[12098650986104, 5.60986, 1.23498],
[12098650986105, 5.60986, 1.23498]

vi. Third-Party Activity Monitoring

As more third-parties utilize the API 90 to communicate
with and/or control the system 180, it may become increas-
ingly beneficial to monitor third-party activities.

Tracking API 90 activities may be desirable to determine
a particular responsible party for data reads and/or writes of
the device service 84 data model. The API 90 activity log
may transparently capture both read and/or write operations
that propagate from the API 90 on behalf of the clients 182
and/or the client 182 vendors.

Multiple levels of granularity may be used to track these
data reads and/or writes. For example, activity logging logic
(e.g., machine instructions implemented on a processor-
based computer system) may track modifications and/or
access to the data model at the devices level, the structure
level, and/or an overall shared data level.

Below is an example of a JSON structure for an activity
log. In some embodiments, the activity log data is provided
based upon a particular account (e.g., at an account and/or
user level).

US 9,491,571 B2

83

Activity Log JSON Example

Top Level

{
¥

SessionDetails:

“sessions” : [<SessionDetails>]

“client__id”: <number>,
“session__id”: <string>,
“events”: [<EventSpecification™>]

EventSpecification:
“action”: “put”/“subscribe”,
“action__targets”™: [<ActionTarget>],
“timestamp”: <number: timestamp in ms, when modification took
place>,

ActionTarget

“bucket__name”: <full bucket name>,

“type”: “merge/overwrite” (put only),

“value”: <json values that were put>, (put only)

“oldvalue”: <full object response json, pre-put> (put, overwrite only)

“structure__name”: <name field out of containing structure bucket>,

“structure__id”: <structure identifier>,

“where__id”: string (device/shared only, both put/subscribe),

“where__name”: <name from where bucket matching where id>
(device/shared only, both put/subscribe),

“label”: <string from shared bucket> (device/shared only, both

put/subscribe)

In certain embodiments, the “sessions” element at the top
level is an array maintained in sorted order by timestamp.
When data from the activity log is to be read, the number of
returned events may be reduced, by returning only events
that have occurred within a certain time period (e.g., the last
5, 7, 10, 15 days, etc.). In some embodiments, this time
period may be configured using a parameter (e.g., in the read
call, etc.).

The “events” are an array of events (e.g., “put” and/or
data “subscribe” events) that may be a combination of
actions (e.g. “action_targets”) and the time in which the
actions happened. As illustrated in the example above, much
event metadata may be captured. For example, “bucket-
_name” may represent a particular location where the event
occurred. “Type” may refer to a particular event type (e.g.,
merge and/or overwrite for “put” activities). “Value” may
refer to a new value that has been written via a “put” activity
and “oldvalue” may refer to the data that existed prior to the
“put”. Structure information corresponding to the activity
may also be stored (e.g., the structure name and/or identifier.
Further, “where” information that describes a more granular
location within the structure may be provided (e.g., a
“where” identifiers and/or name).

The “SessionDetails” may include a client 182 identifier,
a session identifier, and the events performed during the
session. Accordingly, the activity logging logic may be used
to obtain a particular client (e.g. “client_id”) responsible for
performing a particular action (e.g., a put and/or subscribe
event).

In one embodiment, activity logs may be used by the API
90 vendor to determine when API 90 activities have caused
changes to smart devices (e.g., thermostats 10A, detectors
10B, and/or other smart devices 10C). For example, when
unexpected target_temperature changes occur at a thermo-
stat 10A, the activity logs may be used to discern if a
third-party is responsible for the change.

Further, in some embodiments, one or more third-party
vendors may be provided access to the activity logs. The

10

15

20

25

30

35

40

45

50

55

60

65

84

activity logs may help the third-party vendors to understand
how their client applications are effecting the environment
30. In some embodiments, the third-party vendors may
access activity log entries for actions and/or events caused
by all vendors. In alternative embodiments, the third-party
vendors may have access to only the actions and/or events
caused by that particular third-party vendor.

The specific embodiments described above have been
shown by way of example, and it should be understood that
these embodiments may be susceptible to various modifi-
cations and alternative forms. It should be further under-
stood that the claims are not intended to be limited to the
particular forms disclosed, but rather to cover all modifica-
tions, equivalents, and alternatives falling within the spirit
and scope of this disclosure.

The invention claimed is:

1. A system, comprising:

a processor configured to:

provide a message to an application programming
interface (API), wherein the message comprises:
a request for data from a data model, a submission of
data to the data model, or both; and
a host and protocol selection indication, the host and
protocol selection indication providing an indica-
tion between:
a representational state transfer (REST) host, and
a subscription-based application programming
interface (API) host,
wherein the REST host receives REST-based mes-
sages and the subscription-based API host
receives messages in accordance with a stan-
dard of the subscription-based API host; and
receive a response message from the API via:
the REST host, when the host and protocol selection
comprises the REST host; or
the subscription-based API host, when the host and
protocol selection comprises the subscription-
based host;
wherein the data model comprises information related
to one or more smart-devices, one or more smart-
device environment structures comprising the smart-
devices, or both.

2. The system of claim 1, comprising the data model,
wherein the data model comprises a single JavaScript Object
Notation (JSON) document describing the smart-device
environment structure, the smart-devices, or any combina-
tion thereof.

3. The system of claim 1, comprising an API server that
hosts the APIL, wherein a processor of the API server is
configured to: provide the request for data, the submission of
data, or both to a device service that maintains the data
model.

4. The system of claim 3, comprising the device service,
wherein the device service maintains the data model in
hierarchical structure comprising a first element related to
the smart-device environment structure at a first level, a
second element related to the one or more smart-devices,
and a third element comprising a reference to the one or
more smart-devices at a second level subordinate to the first
level.

5. The system of claim 3, wherein the device service is
configured to maintain the data model using a subscription-
based approach.

6. The system of claim 1, comprising an electronic device
configured to subscribe to updates to the data model.

7. The system of claim 6, wherein the electronic device is
configured to:

US 9,491,571 B2

85

establish a session with a device service that maintains the

data model;

sleep after a period of session inactivity; and

wake to receive data based upon a subscription associated

with the message.

8. The system of claim 7, wherein the one or more
smart-devices comprise a thermostat, hazard detector, or any
combination thereof.

9. The system of claim 1, wherein the processor is
configured to provide one or more data changes to a device
service that maintains the data model, wherein the data
changes are stored in the data model.

10. The system of claim 9, wherein the processor is
configured to:

establish a session with the device service; and

upon the one or more data changes occurring at the

electronic device, providing the one or more data
changes to the device service.

11. The system of claim 10, comprising the device ser-
vice, wherein the device service is configured to:

receive the one or more data changes; and

provide the received one or more data changes to sub-

scribers of a subscription affected by the one or more
data changes.

12. A tangible, non-transitory, machine-readable medium,
comprising instructions to:

provide a message to an application programming inter-

face (API), wherein the message comprises:
a request for data from a data model, a submission of
data to the data model, or both; and
a host selection indication, the host and protocol selec-
tion indication providing an indication between:
a representational state transfer (REST) host, and
a subscription-based application programming inter-
face (API) host,
wherein the REST host receives REST-based mes-
sages and the subscription-based API host
receives messages in accordance with a standard
of the subscription-based API host; and

receive a response message from the API via:

the REST host, when the host and protocol selection
comprises the REST host; or

the subscription-based API host, when the host and
protocol selection comprises the subscription-based
host;

wherein the request for data, the submission of data, or

both are configured to create, delete, modify, or any
combination thereof data related to a smart-device
environment structure, a thermostat, a hazard detector,
or any combination thereof stored in a data model
accessible by the API.

13. The tangible, non-transitory, machine-readable
medium of claim 12, wherein the host selection comprises a
selection of the REST host.

10

15

20

25

30

35

40

45

50

86

14. The tangible, non-transitory, machine-readable
medium of claim 12, wherein the host selection comprises a
selection of the subscription-based API host.

15. The tangible, non-transitory, machine-readable
medium of claim 14, wherein the instructions are created
using one or more client libraries provided to a client
developer.

16. The tangible, non-transitory, machine-readable
medium of claim 12, wherein the message comprises the
submission of data to the data model and the submission of
data is configured to affect a control of the operation of the
smart-device environment structure, the thermostat, the haz-
ard detector, or any combination thereof.

17. A computer-implemented method, comprising:

providing a message to an application programming inter-

face (API), wherein the message comprises:

a request for data from a data model, a submission of
data to the data model, or both;

a host and protocol selection indication, the host and
protocol selection indication providing an indication
between:

a representational state transfer (REST) host; and

a subscription-based application programming inter-
face (API) host,

wherein the REST host receives REST-based mes-
sages and the subscription-based API host
receives messages in accordance with a standard
of the subscription-based API host; and

receiving a response message from the API via:

the REST host, when the host and protocol selection
comprises the REST host; or

the subscription-based API host, when the host and
protocol selection comprises the subscription-based
host;

wherein the data model comprises information related to

one or more smart-devices, one or more smart-device

environment structures comprising the smart-devices,
or both.

18. The computer-implemented method of claim 17,
wherein the one or more smart-devices comprise: a thermo-
stat, a hazard detector, or any combination thereof; and

wherein the data comprises one or more device operation

status parameters received from the thermostat, the
hazard detector, or any combination thereof.

19. The computer-implemented method of claim 17,
wherein the data model comprises a single JavaScript Object
Notation (JSON) document describing the one or more
smart-device structures, the one or more smart-devices, or
both.

20. The computer-implemented method of claim 17, com-
prising:

determining that the request should be delayed; and

holding the request until an appropriate time for imple-

mentation of the request.

#* #* #* #* #*

